Decay of the Green’s Function of the Fractional Anderson Model and Connection to Long-Range SAW

被引:0
|
作者
Margherita Disertori
Roberto Maturana Escobar
Constanza Rojas-Molina
机构
[1] University of Bonn Institute for Applied Mathematics & Hausdorff Center for Mathematics,Laboratoire AGM, Département de Mathématiques
[2] CY Cergy Paris Université,undefined
关键词
Fractional Laplacian; Random Schödinger operator; Self-avoiding random walk; Anderson localization; 82B44; 82B41; 35R11 (primary); 47B80; 81Q10 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
We prove a connection between the Green’s function of the fractional Anderson model and the two point function of a self-avoiding random walk with long range jumps, adapting a strategy proposed by Schenker in 2015. This connection allows us to exploit results from the theory of self-avoiding random walks to improve previous bounds known for the fractional Anderson model at strong disorder. In particular, we enlarge the range of the disorder parameter where spectral localization occurs. Moreover we prove that the decay of Green’s function at strong disorder for any 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\upalpha <1$$\end{document} is arbitrarily close to the decay of the massive resolvent of the corresponding fractional Laplacian, in agreement with the case of the standard Anderson model α=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha =1$$\end{document}. We also derive upper and lower bounds for the resolvent of the discrete fractional Laplacian with arbitrary mass m≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 0,$$\end{document} that are of independent interest.
引用
收藏
相关论文
共 50 条
  • [41] Long-range contributions to double beta decay revisited
    Helo, J. C.
    Hirsch, M.
    Ota, T.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (06):
  • [42] Ubiquitous nonexponential decay: the effect of long-range couplings?
    1600, American Inst of Physics, Woodbury, NY, USA (76):
  • [43] Long-range contributions to double beta decay revisited
    J.C. Helo
    M. Hirsch
    T. Ota
    Journal of High Energy Physics, 2016
  • [44] Long-range interactions in turbulence and the energy decay problem
    Davidson, P. A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1937): : 796 - 810
  • [45] Influence of weak nonlinearity on the 1D Anderson model with long-range correlated disorder
    Nguyen, B. P.
    Kim, Kihong
    EUROPEAN PHYSICAL JOURNAL B, 2011, 84 (01): : 79 - 82
  • [46] Efficient Localization Bounds in a Continuous N-Particle Anderson Model with Long-Range Interaction
    Victor Chulaevsky
    Letters in Mathematical Physics, 2016, 106 : 509 - 533
  • [47] Inhomogeneous long-range percolation in the weak decay regime
    Moench, Christian
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 189 (3-4) : 1129 - 1160
  • [48] Delocalization and ballistic dynamics in the two-dimensional Anderson model with long-range correlated disorder
    de Moura, FABF
    Coutinho, MD
    Lyra, ML
    Raposo, EP
    EUROPHYSICS LETTERS, 2004, 66 (04): : 585 - 591
  • [49] On the Long-Range Dependence of Mixed Fractional Poisson Process
    Kataria, K. K.
    Khandakar, M.
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (03) : 1607 - 1622
  • [50] On the Long-Range Dependence of Mixed Fractional Poisson Process
    K. K. Kataria
    M. Khandakar
    Journal of Theoretical Probability, 2021, 34 : 1607 - 1622