Fractional Laplacian;
Random Schödinger operator;
Self-avoiding random walk;
Anderson localization;
82B44;
82B41;
35R11 (primary);
47B80;
81Q10 (secondary);
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We prove a connection between the Green’s function of the fractional Anderson model and the two point function of a self-avoiding random walk with long range jumps, adapting a strategy proposed by Schenker in 2015. This connection allows us to exploit results from the theory of self-avoiding random walks to improve previous bounds known for the fractional Anderson model at strong disorder. In particular, we enlarge the range of the disorder parameter where spectral localization occurs. Moreover we prove that the decay of Green’s function at strong disorder for any 0<α<1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0<\upalpha <1$$\end{document} is arbitrarily close to the decay of the massive resolvent of the corresponding fractional Laplacian, in agreement with the case of the standard Anderson model α=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upalpha =1$$\end{document}. We also derive upper and lower bounds for the resolvent of the discrete fractional Laplacian with arbitrary mass m≥0,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m\ge 0,$$\end{document} that are of independent interest.
机构:
Univ Reggio Calabria, Dipartimento Meccan & Mat MECMAT, I-89122 Reggio Di Calabria, ItalyUniv Reggio Calabria, Dipartimento Meccan & Mat MECMAT, I-89122 Reggio Di Calabria, Italy
Failla, G.
Santini, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Reggio Calabria, Dipartimento Meccan & Mat MECMAT, I-89122 Reggio Di Calabria, ItalyUniv Reggio Calabria, Dipartimento Meccan & Mat MECMAT, I-89122 Reggio Di Calabria, Italy
Santini, A.
Zingales, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Palermo, DISAG, I-90128 Palermo, ItalyUniv Reggio Calabria, Dipartimento Meccan & Mat MECMAT, I-89122 Reggio Di Calabria, Italy
机构:
Small Biosystems Lab, Department of Condensed Matter Physics, Carrer de Marti i Franques, 1, 11, Barcelona,08028, SpainSmall Biosystems Lab, Department of Condensed Matter Physics, Carrer de Marti i Franques, 1, 11, Barcelona,08028, Spain
Rissone, Paolo
Corwin, Eric I.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Physics and Materials Science Institute, University of Oregon, Eugene,OR,97403, United StatesSmall Biosystems Lab, Department of Condensed Matter Physics, Carrer de Marti i Franques, 1, 11, Barcelona,08028, Spain
机构:
Dept Condensed Matter Phys, Small Biosyst Lab, Carrer Marti i Franques,1,11, Barcelona 08028, SpainDept Condensed Matter Phys, Small Biosyst Lab, Carrer Marti i Franques,1,11, Barcelona 08028, Spain
Rissone, Paolo
Corwin, Eric, I
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oregon, Dept Phys, Eugene, OR 97403 USA
Univ Oregon, Mat Sci Inst, Eugene, OR 97403 USADept Condensed Matter Phys, Small Biosyst Lab, Carrer Marti i Franques,1,11, Barcelona 08028, Spain