Decay of the Green’s Function of the Fractional Anderson Model and Connection to Long-Range SAW

被引:0
|
作者
Margherita Disertori
Roberto Maturana Escobar
Constanza Rojas-Molina
机构
[1] University of Bonn Institute for Applied Mathematics & Hausdorff Center for Mathematics,Laboratoire AGM, Département de Mathématiques
[2] CY Cergy Paris Université,undefined
关键词
Fractional Laplacian; Random Schödinger operator; Self-avoiding random walk; Anderson localization; 82B44; 82B41; 35R11 (primary); 47B80; 81Q10 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
We prove a connection between the Green’s function of the fractional Anderson model and the two point function of a self-avoiding random walk with long range jumps, adapting a strategy proposed by Schenker in 2015. This connection allows us to exploit results from the theory of self-avoiding random walks to improve previous bounds known for the fractional Anderson model at strong disorder. In particular, we enlarge the range of the disorder parameter where spectral localization occurs. Moreover we prove that the decay of Green’s function at strong disorder for any 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\upalpha <1$$\end{document} is arbitrarily close to the decay of the massive resolvent of the corresponding fractional Laplacian, in agreement with the case of the standard Anderson model α=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha =1$$\end{document}. We also derive upper and lower bounds for the resolvent of the discrete fractional Laplacian with arbitrary mass m≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 0,$$\end{document} that are of independent interest.
引用
收藏
相关论文
共 50 条
  • [21] On the Long-Range Dependence of Fractional Brownian Motion
    Li, Ming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [22] Entanglement, fractional magnetization, and long-range interactions
    Cadarso, Andrea
    Sanz, Mikel
    Wolf, Michael M.
    Cirac, J. Ignacio
    Perez-Garcia, David
    PHYSICAL REVIEW B, 2013, 87 (03):
  • [23] Prediction of fractional processes with long-range dependence
    Inoue, Akihiko
    Anh, Vo V.
    HOKKAIDO MATHEMATICAL JOURNAL, 2012, 41 (02) : 157 - 183
  • [24] A generalized model of elastic foundation based on long-range interactions: Integral and fractional model
    Di Paola, M.
    Marino, F.
    Zingales, M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (17) : 3124 - 3137
  • [25] A simple model for development and function of long-range connections in neocortex
    Pawelzik, K
    Sejnowski, T
    COMPUTATIONAL NEUROSCIENCE: TRENDS IN RESEARCH, 1997, 1997, : 443 - 447
  • [26] TOWARDS LOCALIZATION IN LONG-RANGE CONTINUOUS INTERACTIVE ANDERSON MODELS
    Chulaevsky, Victor
    OPERATORS AND MATRICES, 2019, 13 (01): : 121 - 153
  • [27] Eigenvalues of Ising connection matrix with long-range interaction
    Litinskii, L. B.
    Kryzhanovsky, B., V
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 558
  • [28] Eigenvalues of Ising connection matrix with long-range interaction
    Litinskii, L.B.
    Kryzhanovsky, B.V.
    Physica A: Statistical Mechanics and its Applications, 2021, 558
  • [29] FUNCTION OF DESIGN IN LONG-RANGE PLANNING
    BLACK, M
    LONG RANGE PLANNING, 1972, 5 (02) : 9 - &
  • [30] Long-range function of an intergenic retrotransposon
    Pi, Wenhu
    Zhu, Xingguo
    Wu, Min
    Wang, Yongchao
    Fulzele, Sadanand
    Eroglu, Ali
    Ling, Jianhua
    Tuan, Dorothy
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (29) : 12992 - 12997