Decay of the Green’s Function of the Fractional Anderson Model and Connection to Long-Range SAW

被引:0
|
作者
Margherita Disertori
Roberto Maturana Escobar
Constanza Rojas-Molina
机构
[1] University of Bonn Institute for Applied Mathematics & Hausdorff Center for Mathematics,Laboratoire AGM, Département de Mathématiques
[2] CY Cergy Paris Université,undefined
关键词
Fractional Laplacian; Random Schödinger operator; Self-avoiding random walk; Anderson localization; 82B44; 82B41; 35R11 (primary); 47B80; 81Q10 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
We prove a connection between the Green’s function of the fractional Anderson model and the two point function of a self-avoiding random walk with long range jumps, adapting a strategy proposed by Schenker in 2015. This connection allows us to exploit results from the theory of self-avoiding random walks to improve previous bounds known for the fractional Anderson model at strong disorder. In particular, we enlarge the range of the disorder parameter where spectral localization occurs. Moreover we prove that the decay of Green’s function at strong disorder for any 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\upalpha <1$$\end{document} is arbitrarily close to the decay of the massive resolvent of the corresponding fractional Laplacian, in agreement with the case of the standard Anderson model α=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha =1$$\end{document}. We also derive upper and lower bounds for the resolvent of the discrete fractional Laplacian with arbitrary mass m≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 0,$$\end{document} that are of independent interest.
引用
收藏
相关论文
共 50 条
  • [1] Decay of the Green's Function of the Fractional Anderson Model and Connection to Long-Range SAW
    Disertori, Margherita
    Escobar, Roberto Maturana
    Rojas-Molina, Constanza
    JOURNAL OF STATISTICAL PHYSICS, 2024, 191 (03)
  • [2] Are the phase in the Anderson model long-range correlated
    Kantelhardt, Jan W.
    Berkovits, Richard
    Havlin, Shlomo
    Bunde, Armin
    Physica A: Statistical Mechanics and its Applications, 1999, 266 (1-4): : 461 - 464
  • [3] Are the phases in the Anderson model long-range correlated?
    Kantelhardt, JW
    Berkovits, R
    Havlin, S
    Bunde, A
    PHYSICA A, 1999, 266 (1-4): : 461 - 464
  • [4] Absence of long-range order in an antiferromagnetic chain with long-range interactions: Green's function approach
    Zhu, Ren-Gui
    Wang, An-Min
    PHYSICAL REVIEW B, 2006, 74 (01)
  • [5] Quantum Heisenberg model with long-range ferromagnetic interactions: A Green's function approach
    Hamedoun, M
    Cherriet, Y
    Hourmatallah, A
    Benzakour, N
    PHYSICAL REVIEW B, 2001, 63 (17):
  • [6] ON THE DECAY OF LONG-RANGE CORRELATIONS
    PRIGOGINE, I
    BALESCU, R
    KRIEGER, IM
    PHYSICA, 1960, 26 (07): : 529 - 530
  • [7] EXPONENTIAL DECAY OF GREEN-FUNCTIONS FOR A CLASS OF LONG-RANGE HAMILTONIANS
    WANG, WM
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (01) : 35 - 41
  • [8] Coexistence of localized and extended states in the Anderson model with long-range hopping
    Temkin, V.
    Ioselevich, A. S.
    ANNALS OF PHYSICS, 2024, 462
  • [9] Delocalization in the 1D Anderson model with long-range correlated disorder
    de Moura, FABF
    Lyra, ML
    PHYSICAL REVIEW LETTERS, 1998, 81 (17) : 3735 - 3738
  • [10] Entanglement in one-dimensional Anderson model with long-range correlated disorder
    Guo Zi-Zheng
    CHINESE PHYSICS LETTERS, 2008, 25 (03) : 1079 - 1082