Bang-singular-bang extremals: sufficient optimality conditions

被引:0
|
作者
L. Poggiolini
G. Stefani
机构
[1] Università degli Studi di Firenze,Dipartimento di Sistemi e Informatica
关键词
Optimal control; minimum time; sufficient conditions; Hamiltonian methods; 49K15; 49K30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give second-order sufficient conditions for strong local optimality of a bang-singular-bang extremal in the minimum time problem. The conditions are given in terms of some regularity assumptions on the extremal and of the coercivity of the extended second variation associated with the minimum time problem with fixed endpoints on the singular arc. The conditions are close to the necessary conditions in the usual sense; namely, we require strict inequalities where the necessary conditions have nonstrict inequalities.
引用
收藏
页码:469 / 514
页数:45
相关论文
共 50 条
  • [31] Second order optimality conditions for controls with continuous and bang-bang components
    Osmolovskii, N. P.
    Maurer, H.
    [J]. SYSTEMS, CONTROL, MODELING AND OPTIMIZATION, 2006, 202 : 297 - +
  • [32] STRONG LOCAL OPTIMALITY FOR A BANG-BANG-SINGULAR EXTREMAL: THE FIXED-FREE CASE
    Poggiolini, Laura
    Stefani, Gianna
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (03) : 2274 - 2294
  • [33] Strong optimality or a bang-bang trajectory
    Agrachev, AA
    Stefani, G
    Zezza, P
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (04) : 991 - 1014
  • [34] A sufficient optimality condition for bang-bang controls on local time-optimal control problems
    Zhu, JH
    Cai, JP
    [J]. PROCEEDINGS OF THE 4TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-4, 2002, : 250 - 254
  • [35] SUFFICIENT SECOND-ORDER CONDITIONS FOR BANG-BANG CONTROL PROBLEMS
    Casas, Eduardo
    Wachsmuth, Daniel
    Wachsmuth, Gerd
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (05) : 3066 - 3090
  • [36] Lipschitz stability of broken extremals in bang-bang control problems
    Felgenhauer, Ursula
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2008, 4818 : 317 - 325
  • [37] High-order approximations for abnormal bang-bang extremals
    Ledzewicz, U
    Schättler, H
    [J]. SYSTEMS MODELLING AND OPTIMIZATION, 1999, 396 : 126 - 134
  • [38] Minimum time optimality of a bang-bang trajectory
    Poggiolini, L
    Stefani, G
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 1922 - 1925
  • [39] Optimization methods for the verification of second order sufficient conditions for bang-bang controls
    Maurer, H
    Büskens, C
    Kim, JHR
    Kaya, CY
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2005, 26 (03): : 129 - 156
  • [40] Second order sufficient conditions for time-optimal bang-bang control
    Maurer, H
    Osmolovskii, NP
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 42 (06) : 2239 - 2263