Lipschitz stability of broken extremals in bang-bang control problems

被引:5
|
作者
Felgenhauer, Ursula [1 ]
机构
[1] Brandenburg Tech Univ Cottbus, Inst Math, D-03013 Cottbus, Germany
来源
关键词
D O I
10.1007/978-3-540-78827-0_35
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Optimal bang-bang controls appear in problems where the system dynamics linearly depends on the control input. The principal control structure as well as switching points localization are essential solution characteristics. Under rather strong optimality and regularity conditions, for so-called simple switches of (only) one control component, the switching points had been shown being differentiable w.r.t. problem parameters. In case that multiple (or: simultaneous) switches occur, the differentiability is lost but Lipschitz continuous behavior can be observed e.g. for double switches. The proof of local structural stability is based on parametrizations of broken extremals via certain backward shooting approach. In a second step, the Lipschitz property is derived by means of nonsmooth Implicit Function Theorems.
引用
收藏
页码:317 / 325
页数:9
相关论文
共 50 条
  • [1] A Geometric Analysis of Bang-Bang Extremals in Optimal Control Problems for Combination Cancer Chemotherapy
    Schaettler, Heinz
    Ledzewicz, Urszula
    Dehkordi, S. Mahmoudian
    Reisi, M.
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 7691 - 7696
  • [2] Stability for bang-bang control problems of partial differential equations
    Nguyen Thanh Qui
    Wachsmuth, Daniel
    [J]. OPTIMIZATION, 2018, 67 (12) : 2157 - 2177
  • [3] The shooting approach in analyzing bang-bang extremals with simultaneous control switches
    Felgenhauer, Ursula
    [J]. CONTROL AND CYBERNETICS, 2008, 37 (02): : 307 - 327
  • [4] Second-Order Optimality Conditions for Broken Extremals and Bang-Bang Controls: Theory and Applications
    Osmolovskii, Nikolai P.
    Maurer, Helmut
    [J]. ADVANCES IN MATHEMATICAL MODELING, OPTIMIZATION AND OPTIMAL CONTROL, 2016, 109 : 147 - 201
  • [5] STABILITY AND GENERICITY OF BANG-BANG CONTROLS IN AFFINE PROBLEMS
    Corella, Alberto Dominguez
    Wachsmuth, Gerd
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (03) : 1669 - 1689
  • [6] BANG-BANG SERIES CAPACITOR TRANSIENT STABILITY CONTROL
    KOSTEREV, DN
    KOLODZIEJ, WJ
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (02) : 915 - 923
  • [7] High-order approximations for abnormal bang-bang extremals
    Ledzewicz, U
    Schättler, H
    [J]. SYSTEMS MODELLING AND OPTIMIZATION, 1999, 396 : 126 - 134
  • [8] Conjugate times for smooth singular trajectories and bang-bang extremals
    Bonnard, B
    Faubourg, L
    Trélat, E
    [J]. LAGRANGIAN AND HAMILTONIAN METHODS IN NONLINEAR CONTROL 2003, 2003, : 117 - 122
  • [9] Smooth Regularization of Bang-Bang Optimal Control Problems
    Silva, Cristiana
    Trelat, Emmanuel
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (11) : 2488 - 2499
  • [10] Approximations of linear control problems with bang-bang solutions
    Alt, Walter
    Baier, Robert
    Lempio, Frank
    Gerdts, Matthias
    [J]. OPTIMIZATION, 2013, 62 (01) : 9 - 32