Spatial reconstruction of single-cell gene expression data

被引:0
|
作者
Rahul Satija
Jeffrey A Farrell
David Gennert
Alexander F Schier
Aviv Regev
机构
[1] Broad Institute of MIT and Harvard,Department of Molecular and Cellular Biology
[2] Harvard University,Department of Biology
[3] Center for Brain Science,undefined
[4] Harvard University,undefined
[5] Harvard Stem Cell Institute,undefined
[6] Harvard University,undefined
[7] Center for Systems Biology,undefined
[8] Harvard University,undefined
[9] Howard Hughes Medical Institute,undefined
[10] Massachusetts Institute of Technology,undefined
[11] Present address: New York Genome Center,undefined
[12] New York,undefined
[13] New York,undefined
[14] USA and Department of Biology,undefined
[15] New York University,undefined
[16] New York,undefined
[17] New York,undefined
[18] USA.,undefined
来源
Nature Biotechnology | 2015年 / 33卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
RNA-seq data from single cells are mapped to their location in complex tissues using gene expression atlases based on in situ hybridization.
引用
收藏
页码:495 / 502
页数:7
相关论文
共 50 条
  • [41] SelfE: Gene Selection via Self-Expression for Single-Cell Data
    Rai, Priyadarshini
    Sengupta, Debarka
    Majumdar, Angshul
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (01) : 624 - 632
  • [42] SCANPY: large-scale single-cell gene expression data analysis
    F. Alexander Wolf
    Philipp Angerer
    Fabian J. Theis
    Genome Biology, 19
  • [43] How to build regulatory networks from single-cell gene expression data
    Pratapa, Aditya
    Jalihal, Amogh P.
    Law, Jeffrey N.
    Bharadwaj, Aditya
    Murali, T. M.
    ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [44] Label-aware distance mitigates temporal and spatial variability for clustering and visualization of single-cell gene expression data
    Liang, Shaoheng
    Dou, Jinzhuang
    Iqbal, Ramiz
    Chen, Ken
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [45] Label-aware distance mitigates temporal and spatial variability for clustering and visualization of single-cell gene expression data
    Shaoheng Liang
    Jinzhuang Dou
    Ramiz Iqbal
    Ken Chen
    Communications Biology, 7
  • [46] Contrastively generative self-expression model for single-cell and spatial multimodal data
    Zhang, Chengming
    Yang, Yiwen
    Tang, Shijie
    Aihara, Kazuyuki
    Zhang, Chuanchao
    Chen, Luonan
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [47] scHLAcount: allele-specific HLA expression from single-cell gene expression data
    Darby, Charlotte A.
    Stubbington, Michael J. T.
    Marks, Patrick J.
    Barrio, Alvaro Martinez
    Fiddes, Ian T.
    BIOINFORMATICS, 2020, 36 (12) : 3905 - 3906
  • [48] Optimal Gene Filtering for Single-Cell data (OGFSC)-a gene filtering algorithm for single-cell RNA-seq data
    Hao, Jie
    Cao, Wei
    Huang, Jian
    Zou, Xin
    Han, Ze-Guang
    BIOINFORMATICS, 2019, 35 (15) : 2602 - 2609
  • [49] Boosting single-cell gene regulatory network reconstruction via bulk-cell transcriptomic data
    Shu, Hantao
    Ding, Fan
    Zhou, Jingtian
    Xue, Yexiang
    Zhao, Dan
    Zeng, Jianyang
    Ma, Jianzhu
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
  • [50] Single-cell gene expression in tissues, tumors, and cell lines
    Hashimoto, Shinichi
    CYTOKINE, 2017, 100 : 24 - 24