Spatial reconstruction of single-cell gene expression data

被引:0
|
作者
Rahul Satija
Jeffrey A Farrell
David Gennert
Alexander F Schier
Aviv Regev
机构
[1] Broad Institute of MIT and Harvard,Department of Molecular and Cellular Biology
[2] Harvard University,Department of Biology
[3] Center for Brain Science,undefined
[4] Harvard University,undefined
[5] Harvard Stem Cell Institute,undefined
[6] Harvard University,undefined
[7] Center for Systems Biology,undefined
[8] Harvard University,undefined
[9] Howard Hughes Medical Institute,undefined
[10] Massachusetts Institute of Technology,undefined
[11] Present address: New York Genome Center,undefined
[12] New York,undefined
[13] New York,undefined
[14] USA and Department of Biology,undefined
[15] New York University,undefined
[16] New York,undefined
[17] New York,undefined
[18] USA.,undefined
来源
Nature Biotechnology | 2015年 / 33卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
RNA-seq data from single cells are mapped to their location in complex tissues using gene expression atlases based on in situ hybridization.
引用
收藏
页码:495 / 502
页数:7
相关论文
共 50 条
  • [21] A Novel Trajectory Inference Method on Single-Cell Gene Expression Data
    Tang, Daoxu
    Lu, Xinguo
    Jiang, Kaibao
    Sun, Fengxu
    Li, Jinxin
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 364 - 373
  • [22] Cancer classification of single-cell gene expression data by neural network
    Kim, Bong-Hyun
    Yu, Kijin
    Lee, Peter C. W.
    BIOINFORMATICS, 2020, 36 (05) : 1360 - 1366
  • [23] Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities
    Miller, Brendan F.
    Bambah-Mukku, Dhananjay
    Dulac, Catherine
    Zhuang, Xiaowei
    Fan, Jean
    GENOME RESEARCH, 2021, 31 (10) : 1843 - 1855
  • [24] Protocol to recover single-cell gene expression profiles from spatial transcriptomics data using cluster computing
    Lee, Young Je
    Chen, Hao
    Lugo, Jose
    STAR PROTOCOLS, 2025, 6 (01):
  • [25] COME: contrastive mapping learning for spatial reconstruction of single-cell RNA sequencing data
    Wei, Xindian
    Chen, Tianyi
    Wang, Xibiao
    Shen, Wenjun
    Liu, Cheng
    Wu, Si
    Wong, Hau-San
    BIOINFORMATICS, 2025, 41 (03)
  • [26] Segmentation aware probabilistic phenotyping of single-cell spatial protein expression data
    Lee, Yuju
    Chen, Edward L. Y.
    Chan, Darren C. H.
    Dinesh, Anuroopa
    Afiuni-Zadeh, Somaieh
    Klamann, Conor
    Selega, Alina
    Mrkonjic, Miralem
    Jackson, Hartland W.
    Campbell, Kieran R.
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [27] Synthesising Executable Gene Regulatory Networks from Single-Cell Gene Expression Data
    Fisher, Jasmin
    Koeksal, Ali Sinan
    Piterman, Nir
    Woodhouse, Steven
    COMPUTER AIDED VERIFICATION, PT I, 2015, 9206 : 544 - 560
  • [28] Joint learning of multiple gene networks from single-cell gene expression data
    Wu, Nuosi
    Yin, Fu
    Ou-Yang, Le
    Zhu, Zexuan
    Xie, Weixin
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 2583 - 2595
  • [29] De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc
    Li, Runze
    Yang, Xuerui
    GENOME BIOLOGY, 2022, 23 (01)
  • [30] De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc
    Runze Li
    Xuerui Yang
    Genome Biology, 23