Quantifying the effect of gate errors on variational quantum eigensolvers for quantum chemistry

被引:0
|
作者
Kieran Dalton
Christopher K. Long
Yordan S. Yordanov
Charles G. Smith
Crispin H. W. Barnes
Normann Mertig
David R. M. Arvidsson-Shukur
机构
[1] Hitachi Cambridge Laboratory,Cavendish Laboratory, Department of Physics
[2] University of Cambridge,Department of Physics
[3] ETH Zürich,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Variational quantum eigensolvers (VQEs) are leading candidates to demonstrate near-term quantum advantage. Here, we conduct density-matrix simulations of leading gate-based VQEs for a range of molecules. We numerically quantify their level of tolerable depolarizing gate-errors. We find that: (i) The best-performing VQEs require gate-error probabilities between 10−6 and 10−4 (10−4 and 10−2 with error mitigation) to predict, within chemical accuracy, ground-state energies of small molecules with 4 − 14 orbitals. (ii) ADAPT-VQEs that construct ansatz circuits iteratively outperform fixed-circuit VQEs. (iii) ADAPT-VQEs perform better with circuits constructed from gate-efficient rather than physically-motivated elements. (iv) The maximally-allowed gate-error probability, pc, for any VQE to achieve chemical accuracy decreases with the number NII of noisy two-qubit gates as pc∝~NII−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}_{c}\mathop{\propto }\limits_{\displaystyle{ \sim }}{N}_{{{{\rm{II}}}}}^{-1}$$\end{document}. Additionally, pc decreases with system size, even with error mitigation, implying that larger molecules require even lower gate-errors. Thus, quantum advantage via gate-based VQEs is unlikely unless gate-error probabilities are decreased by orders of magnitude.
引用
收藏
相关论文
共 50 条
  • [1] Quantifying the effect of gate errors on variational quantum eigensolvers for quantum chemistry
    Dalton, Kieran
    Long, Christopher K.
    Yordanov, Yordan S.
    Smith, Charles G.
    Barnes, Crispin H. W.
    Mertig, Normann
    Arvidsson-Shukur, David R. M.
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [2] Quantifying the Efficiency of State Preparation via Quantum Variational Eigensolvers
    Matos, Gabriel
    Johri, Sonika
    Papic, Zlatko
    PRX QUANTUM, 2021, 2 (01):
  • [3] Mitigating quantum gate errors for variational eigensolvers using hardware-inspired zero-noise extrapolation
    Uvarov, Alexey
    Rabinovich, Daniil
    Lakhmanskaya, Olga
    Lakhmanskiy, Kirill
    Biamonte, Jacob
    Adhikary, Soumik
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [4] Variational quantum eigensolvers by variance minimization
    Zhang, Dan-Bo
    Chen, Bin-Lin
    Yuan, Zhan-Hao
    Yin, Tao
    CHINESE PHYSICS B, 2022, 31 (12)
  • [5] Variational quantum eigensolvers in the era of distributed quantum computers
    Khait, Ilia
    Tham, Edwin
    Segal, Dvira
    Brodutch, Aharon
    PHYSICAL REVIEW A, 2023, 108 (05)
  • [6] Benchmarking Adaptive Variational Quantum Eigensolvers
    Claudino, Daniel
    Wright, Jerimiah
    McCaskey, Alexander J.
    Humble, Travis S.
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [7] Variational quantum eigensolvers by variance minimization
    张旦波
    陈彬琳
    原展豪
    殷涛
    Chinese Physics B, 2022, 31 (12) : 41 - 48
  • [8] Collective optimization for variational quantum eigensolvers
    Zhang, Dan-Bo
    Yin, Tao
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [9] Variational Quantum Eigensolvers for Sparse Hamiltonians
    Kirby, William M.
    Love, Peter J.
    PHYSICAL REVIEW LETTERS, 2021, 127 (11)
  • [10] Contextuality Test of the Nonclassicality of Variational Quantum Eigensolvers
    Kirby, William M.
    Love, Peter J.
    PHYSICAL REVIEW LETTERS, 2019, 123 (20)