Quantifying the effect of gate errors on variational quantum eigensolvers for quantum chemistry

被引:0
|
作者
Kieran Dalton
Christopher K. Long
Yordan S. Yordanov
Charles G. Smith
Crispin H. W. Barnes
Normann Mertig
David R. M. Arvidsson-Shukur
机构
[1] Hitachi Cambridge Laboratory,Cavendish Laboratory, Department of Physics
[2] University of Cambridge,Department of Physics
[3] ETH Zürich,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Variational quantum eigensolvers (VQEs) are leading candidates to demonstrate near-term quantum advantage. Here, we conduct density-matrix simulations of leading gate-based VQEs for a range of molecules. We numerically quantify their level of tolerable depolarizing gate-errors. We find that: (i) The best-performing VQEs require gate-error probabilities between 10−6 and 10−4 (10−4 and 10−2 with error mitigation) to predict, within chemical accuracy, ground-state energies of small molecules with 4 − 14 orbitals. (ii) ADAPT-VQEs that construct ansatz circuits iteratively outperform fixed-circuit VQEs. (iii) ADAPT-VQEs perform better with circuits constructed from gate-efficient rather than physically-motivated elements. (iv) The maximally-allowed gate-error probability, pc, for any VQE to achieve chemical accuracy decreases with the number NII of noisy two-qubit gates as pc∝~NII−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}_{c}\mathop{\propto }\limits_{\displaystyle{ \sim }}{N}_{{{{\rm{II}}}}}^{-1}$$\end{document}. Additionally, pc decreases with system size, even with error mitigation, implying that larger molecules require even lower gate-errors. Thus, quantum advantage via gate-based VQEs is unlikely unless gate-error probabilities are decreased by orders of magnitude.
引用
收藏
相关论文
共 50 条
  • [31] Improving the Accuracy of Variational Quantum Eigensolvers with Fewer Qubits Using Orbital Optimization
    Bierman, Joel
    Li, Yingzhou
    Lu, Jianfeng
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, : 790 - 798
  • [32] Error mitigation in variational quantum eigensolvers using tailored probabilistic machine learning
    Jiang, Tao
    Rogers, John
    Frank, Marius S.
    Christiansen, Ove
    Yao, Yong-Xin
    Lanata, Nicola
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [33] Variational Quantum Chemistry Programs in JaqalPaq
    Maupin, Oliver G.
    Baczewski, Andrew D.
    Love, Peter J.
    Landahl, Andrew J.
    ENTROPY, 2021, 23 (06)
  • [34] The Cost of Improving the Precision of the Variational Quantum Eigensolver for Quantum Chemistry
    Mihalikova, Ivana
    Pivoluska, Matej
    Plesch, Martin
    Friak, Martin
    Nagaj, Daniel
    Sob, Mojmir
    NANOMATERIALS, 2022, 12 (02)
  • [35] Quantifying the Sensitivity to Errors in Analog Quantum Simulation
    Poggi, Pablo M.
    Lysne, Nathan K.
    Kuper, Kevin W.
    Deutsch, Ivan H.
    Jessen, Poul S.
    PRX QUANTUM, 2020, 1 (02):
  • [36] Variational quantum gate optimization at the pulse level
    Greenaway, Sean
    Petiziol, Francesco
    Zhao, Hongzheng
    Mintert, Florian
    SCIPOST PHYSICS, 2024, 16 (03):
  • [37] Classical postprocessing for the unitary block-optimization scheme to reduce the effect of noise on the optimization of variational quantum eigensolvers
    Ding, Xiaochuan
    Clark, Bryan K.
    Physical Review A, 2024, 110 (06)
  • [38] Comparative study of adaptive variational quantum eigensolvers for multi-orbital impurity models
    Mukherjee, Anirban
    Berthusen, Noah F.
    Getelina, Joao C.
    Orth, Peter P.
    Yao, Yong-Xin
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [39] Comparative study of adaptive variational quantum eigensolvers for multi-orbital impurity models
    Anirban Mukherjee
    Noah F. Berthusen
    João C. Getelina
    Peter P. Orth
    Yong-Xin Yao
    Communications Physics, 6
  • [40] Open source variational quantum eigensolver extension of the quantum learning machine for quantum chemistry
    Haidar, Mohammad
    Rancic, Marko J. J.
    Ayral, Thomas
    Maday, Yvon
    Piquemal, Jean-Philip
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2023, 13 (05)