Generalized Derivations of Hom–Lie Triple Systems

被引:0
|
作者
Jia Zhou
Liangyun Chen
Yao Ma
机构
[1] Jilin Agricultural University,College of Information Technology
[2] Northeast Normal University,School of Mathematics and Statistics
[3] University of Science and Technology of China,School of Mathematical Sciences
关键词
Hom–Lie triple systems; Generalized derivations; Centroids; 17A75; 17B30; 17B70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give some properties of the generalized derivation algebra GDer(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GDer}(T)$$\end{document} of a Hom–Lie triple systems T. In particular, we prove that GDer(T)=QDer(T)+QC(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GDer}(T) = \mathrm{QDer}(T) + \mathrm{QC}(T)$$\end{document}, the sum of the quasiderivation algebra and the quasicentroid. We also prove that QDer(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{QDer}(T)$$\end{document} can be embedded as derivations in a larger Hom–Lie triple system. General results on centroids of Hom–Lie triple systems are also developed in this paper.
引用
收藏
页码:637 / 656
页数:19
相关论文
共 50 条