Generalized Derivations of Hom–Lie Triple Systems

被引:0
|
作者
Jia Zhou
Liangyun Chen
Yao Ma
机构
[1] Jilin Agricultural University,College of Information Technology
[2] Northeast Normal University,School of Mathematics and Statistics
[3] University of Science and Technology of China,School of Mathematical Sciences
关键词
Hom–Lie triple systems; Generalized derivations; Centroids; 17A75; 17B30; 17B70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give some properties of the generalized derivation algebra GDer(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GDer}(T)$$\end{document} of a Hom–Lie triple systems T. In particular, we prove that GDer(T)=QDer(T)+QC(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GDer}(T) = \mathrm{QDer}(T) + \mathrm{QC}(T)$$\end{document}, the sum of the quasiderivation algebra and the quasicentroid. We also prove that QDer(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{QDer}(T)$$\end{document} can be embedded as derivations in a larger Hom–Lie triple system. General results on centroids of Hom–Lie triple systems are also developed in this paper.
引用
收藏
页码:637 / 656
页数:19
相关论文
共 50 条
  • [31] Approximate Homomorphisms and Derivations on Normed Lie Triple Systems
    Kim, Hark-Mahn
    Lee, Juri
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [32] Alternating triple systems with simple Lie algebras of derivations
    Bremner, MR
    Hentzel, IR
    Non-Associative Algebra and Its Applications, 2006, 246 : 55 - 82
  • [33] The role of derivations in the nilpotence and semisimplicity of Lie triple systems
    Abdelwahab, Hani
    Martin, Antonio J. Calderon
    Mahanna, Moustafa
    QUAESTIONES MATHEMATICAE, 2024, 47 (07) : 1437 - 1459
  • [34] On generalized Lie derivations
    Bennis, Driss
    Vishki, Hamid Reza Ebrahimi
    Fahid, Brahim
    Bahmani, Mohammad Ali
    AFRIKA MATEMATIKA, 2020, 31 (3-4) : 423 - 435
  • [35] On generalized Lie derivations
    Driss Bennis
    Hamid Reza Ebrahimi Vishki
    Brahim Fahid
    Mohammad Ali Bahmani
    Afrika Matematika, 2020, 31 : 423 - 435
  • [36] Additive Lie (ξ-Lie) derivations and generalized Lie (ξ-Lie) derivations on prime algebras
    Qi, Xiao Fei
    Hou, Jin Chuan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (02) : 383 - 392
  • [37] Additive Lie(ξ-Lie) Derivations and Generalized Lie(ξ-Lie) Derivations on Prime Algebras
    Xiao Fei QI
    Jin Chuan HOU
    数学学报, 2013, 56 (02) : 296 - 296
  • [38] Additive Lie (ξ-Lie) Derivations and Generalized Lie (ξ-Lie) Derivations on Prime Algebras
    Xiao Fei QI
    Jin Chuan HOU
    Acta Mathematica Sinica, 2013, 29 (02) : 383 - 392
  • [39] Additive Lie (ξ-Lie) derivations and generalized Lie (ξ-Lie) derivations on nest algebras
    Qi, Xiaofei
    Hou, Jinchuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) : 843 - 854
  • [40] Additive Lie (ξ-Lie) Derivations and Generalized Lie (ξ-Lie) Derivations on Prime Algebras
    Xiao Fei QI
    Jin Chuan HOU
    Acta Mathematica Sinica,English Series, 2013, (02) : 383 - 392