Generalized Derivations of Hom–Lie Triple Systems

被引:0
|
作者
Jia Zhou
Liangyun Chen
Yao Ma
机构
[1] Jilin Agricultural University,College of Information Technology
[2] Northeast Normal University,School of Mathematics and Statistics
[3] University of Science and Technology of China,School of Mathematical Sciences
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2018年 / 41卷
关键词
Hom–Lie triple systems; Generalized derivations; Centroids; 17A75; 17B30; 17B70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give some properties of the generalized derivation algebra GDer(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GDer}(T)$$\end{document} of a Hom–Lie triple systems T. In particular, we prove that GDer(T)=QDer(T)+QC(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GDer}(T) = \mathrm{QDer}(T) + \mathrm{QC}(T)$$\end{document}, the sum of the quasiderivation algebra and the quasicentroid. We also prove that QDer(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{QDer}(T)$$\end{document} can be embedded as derivations in a larger Hom–Lie triple system. General results on centroids of Hom–Lie triple systems are also developed in this paper.
引用
收藏
页码:637 / 656
页数:19
相关论文
共 50 条
  • [21] LIE TRIPLE HIGHER DERIVATIONS ON GENERALIZED MATRIX ALGEBRAS
    Ebrahimi, Sepideh
    MATHEMATICAL REPORTS, 2015, 17 (04): : 391 - 405
  • [22] Characterizations of Lie triple derivations on generalized matrix algebras
    Ashraf, Mohammad
    Akhtar, Mohd Shuaib
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (09) : 3651 - 3660
  • [23] Hom-Lie Algebras with Derivations
    Li, Yizheng
    Wang, Dingguo
    FRONTIERS OF MATHEMATICS, 2024, 19 (03): : 535 - 550
  • [24] Cohomologies and deformations of Lie triple systems with derivations
    Sun, Qinxiu
    Chen, Shan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (03)
  • [25] Abelian extensions of Lie triple systems with derivations
    Wu, Xueru
    Ma, Yao
    Chen, Liangyun
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (03): : 1087 - 1103
  • [26] Generalized derivations and Hom-Lie algebra structures on sl2
    Garcia-Delgado, R.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 2741 - 2755
  • [27] On the Lie triple derivations
    Asif, Sania
    Wu, Zhixiang
    Munir, Mobeen
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6084 - 6095
  • [28] Generalized Lie (Jordan) Triple Derivations on Arbitrary Triangular Algebras
    Ashraf, Mohammad
    Akhtar, Mohd Shuaib
    Ansari, Mohammad Afajal
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3767 - 3776
  • [29] Generalized Lie (Jordan) Triple Derivations on Arbitrary Triangular Algebras
    Mohammad Ashraf
    Mohd Shuaib Akhtar
    Mohammad Afajal Ansari
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3767 - 3776
  • [30] On the Lie derivations and generalized Lie derivations of quaternion rings
    Ghahramani, H.
    Ghosseiri, M. N.
    Zadeh, L. Heidari
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (03) : 1215 - 1221