Fréchet differentiability in statistical inference for time series

被引:0
|
作者
Tadeusz Bednarski
机构
[1] Wroclaw University,Institute of Economic Sciences
来源
关键词
Time series; Robust inference; Differentiability; 62F35; 62E20;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown how the method of Fréchet differentiability can simplify the asymptotic derivations in an important range of robust inferential problems for stationary and related time series models. The uniform root-n consistency of the empirical distribution function for the Cramer von Mises norm under a weak mixing condition is indicated. Various regularity conditions naturally implemented and leading to the differentiability are discussed. A simulation study supplementing the theoretical discussion is included.
引用
收藏
页码:517 / 528
页数:11
相关论文
共 50 条
  • [31] Statistical inference for a multivariate diffusion model of an ecological time series
    Varughese, Melvin M.
    Pienaar, Etienne A. D.
    [J]. ECOSPHERE, 2013, 4 (08):
  • [32] On statistical inference in time series analysis of the evolution of road safety
    Commandeur, Jacques J. F.
    Bijleveld, Frits D.
    Bergel-Hayat, Ruth
    Antoniou, Constantinos
    Yannis, George
    Papadimitriou, Eleonora
    [J]. ACCIDENT ANALYSIS AND PREVENTION, 2013, 60 : 424 - 434
  • [33] A new statistical inference test for fMRI time-series
    Jarmasz, M
    Somorjai, R
    Baumgartner, R
    [J]. NEUROIMAGE, 2001, 13 (06) : S163 - S163
  • [34] Statistical inference for time series with non-precise data
    Lee, Woo-Joo
    Jung, Hye-Young
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2019, 114 : 99 - 114
  • [35] 对偶Fréchet空间
    赵方方
    [J]. 聊城大学学报(自然科学版), 2016, 29 (02) : 46 - 48
  • [36] Approximating the Fréchet Distance for Realistic Curves in Near Linear Time
    Anne Driemel
    Sariel Har-Peled
    Carola Wenk
    [J]. Discrete & Computational Geometry, 2012, 48 : 94 - 127
  • [37] Approximating the Fr,chet Distance for Realistic Curves in Near Linear Time
    Driemel, Anne
    Har-Peled, Sariel
    Wenk, Carola
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (01) : 94 - 127
  • [38] Stochastic calculus on Fréchet spaces
    Diego S. Ledesma
    [J]. Advances in Operator Theory, 2021, 6
  • [39] Computing the Fréchet Gap Distance
    Chenglin Fan
    Benjamin Raichel
    [J]. Discrete & Computational Geometry, 2021, 65 : 1244 - 1274
  • [40] A problem on the structure of Fr,chet spaces
    Bonet, Jose
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2010, 104 (02) : 427 - 434