Statistical inference for a multivariate diffusion model of an ecological time series

被引:2
|
作者
Varughese, Melvin M. [1 ]
Pienaar, Etienne A. D. [1 ]
机构
[1] Univ Cape Town, Dept Stat Sci, ZA-7701 Cape Town, Western Cape, South Africa
来源
ECOSPHERE | 2013年 / 4卷 / 08期
基金
新加坡国家研究基金会;
关键词
diffusion process; Fokker-Planck equation; Markov Chain Monte Carlo; parameter estimation; plankton; population model; MAXIMUM-LIKELIHOOD-ESTIMATION; MARK-RECAPTURE DATA; POPULATION-MODELS; GROWTH; EXTINCTION; EXPANSION;
D O I
10.1890/ES13-00092.1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Diffusion processes are natural modelling frameworks for many stochastic phenomena. However since inference for nonlinear diffusion models is difficult, the diffusion models used within the ecological literature are predominantly linear thus ignoring the more complex forces that many populations and environments are subject to. We suggest a parameter estimation procedure that is computationally efficient and valid for a wide class of diffusion models. This includes diffusions that are nonlinear and/or multivariate. The procedure is used to fit a diffusion model to a time series with three variables: the plankton abundances for both Pseudo-nitzschia australis and Prorocentrum micans in addition to the surface water temperature. Pseudo-nitzschia australis are shown to achieve maximal growth with a water temperature in the region of 7.8-16.0 degrees C. The corresponding optimum temperature region for Prorocentrum micans is 12.5-24.5 degrees C with the dinoflagellate appearing to be less sensitive to sub-optimal temperatures. Both species are governed by r-type strategies and are subject to regulated growth. Though Prorocentrum micans are known to feed on diatoms, we are unable to find evidence of feeding on Pseudo-nitzschia australis. We thus demonstrate that by fitting a diffusion model to an ecological dataset, one may learn much about the factors that affect the ecosystem. A good understanding of these factors is vital in order to manage an ecosystem appropriately.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Model Free Inference on Multivariate Time Series with Conditional Correlations
    Thomakos, Dimitrios
    Klepsch, Johannes
    Politis, Dimitris N.
    [J]. STATS, 2020, 3 (04): : 484 - 509
  • [2] Statistical inference of multivariate distribution parameters for non-Gaussian distributed time series
    Repetowicz, P
    Richmond, P
    [J]. ACTA PHYSICA POLONICA B, 2005, 36 (09): : 2785 - 2796
  • [3] STATISTICAL INFERENCE FOR FUNCTIONAL TIME SERIES
    Li, Jie
    Yang, Lijian
    [J]. STATISTICA SINICA, 2023, 33 (01) : 519 - 549
  • [4] Asymptotic theory of statistical inference for time series
    Lieberman, O
    [J]. ECONOMETRIC THEORY, 2002, 18 (04) : 993 - 999
  • [5] Statistical Deconvolution for Inference of Infection Time Series
    Miller, Andrew C.
    Hannah, Lauren A.
    Futoma, Joseph
    Foti, Nicholas J.
    Fox, Emily B.
    D'Amour, Alexander
    Sandler, Mark
    Saurous, Rif A.
    Lewnard, Joseph A.
    [J]. EPIDEMIOLOGY, 2022, 33 (04) : 470 - 479
  • [6] STATISTICAL RECONSTRUCTION OF MULTIVARIATE TIME-SERIES
    NIEDZWIECKI, M
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (01) : 451 - 457
  • [7] Network inference with confidence from multivariate time series
    Kramer, Mark A.
    Eden, Uri T.
    Cash, Sydney S.
    Kolaczyk, Eric D.
    [J]. PHYSICAL REVIEW E, 2009, 79 (06)
  • [8] Inference of partial correlations of a multivariate Gaussian time series
    Dilernia, A. S.
    Fiecas, M.
    Zhang, L.
    [J]. BIOMETRIKA, 2024,
  • [9] Fréchet differentiability in statistical inference for time series
    Tadeusz Bednarski
    [J]. Statistical Methods & Applications, 2010, 19 : 517 - 528
  • [10] STATISTICAL INFERENCE FOR FUNCTIONAL TIME SERIES: AUTOCOVARIANCE FUNCTION
    Zhong, Chen
    Yang, Lijian
    [J]. STATISTICA SINICA, 2023, 33 (04) : 2519 - 2543