Inference of partial correlations of a multivariate Gaussian time series

被引:0
|
作者
Dilernia, A. S. [1 ]
Fiecas, M. [2 ]
Zhang, L. [2 ]
机构
[1] Grand Valley State Univ, Dept Stat, Allendale, MI 49401 USA
[2] Univ Minnesota, Div Biostat, Minneapolis, MN 55455 USA
关键词
Autocorrelation; Partial correlation; Quadratic form; Taylor series;
D O I
10.1093/biomet/asae012
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We derive an asymptotic joint distribution and novel covariance estimator for the partial correlations of a multivariate Gaussian time series given mild regularity conditions. Using our derived asymptotic distribution, we develop a Wald confidence interval and testing procedure for inference of individual partial correlations for time series data. Through simulation we demonstrate that our proposed confidence interval attains higher coverage rates, and our testing procedure attains false positive rates closer to the nominal levels than approaches that assume independent observations when autocorrelation is present.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Model Free Inference on Multivariate Time Series with Conditional Correlations
    Thomakos, Dimitrios
    Klepsch, Johannes
    Politis, Dimitris N.
    [J]. STATS, 2020, 3 (04): : 484 - 509
  • [2] Statistical inference of multivariate distribution parameters for non-Gaussian distributed time series
    Repetowicz, P
    Richmond, P
    [J]. ACTA PHYSICA POLONICA B, 2005, 36 (09): : 2785 - 2796
  • [3] Greedy Gaussian segmentation of multivariate time series
    Hallac, David
    Nystrup, Peter
    Boyd, Stephen
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2019, 13 (03) : 727 - 751
  • [4] SIMULATION OF MULTIVARIATE GAUSSIAN TIME-SERIES
    KROGSTAD, HE
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1989, 18 (03) : 929 - 941
  • [5] Greedy Gaussian segmentation of multivariate time series
    David Hallac
    Peter Nystrup
    Stephen Boyd
    [J]. Advances in Data Analysis and Classification, 2019, 13 : 727 - 751
  • [6] On testing for separable correlations of multivariate time series
    Matsuda, Y
    Yajima, Y
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2004, 25 (04) : 501 - 528
  • [7] Network inference with confidence from multivariate time series
    Kramer, Mark A.
    Eden, Uri T.
    Cash, Sydney S.
    Kolaczyk, Eric D.
    [J]. PHYSICAL REVIEW E, 2009, 79 (06)
  • [8] Mining partial periodic correlations in time series
    He, Zhen
    Wang, X. Sean
    Lee, Byung Suk
    Ling, Alan C. H.
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2008, 15 (01) : 31 - 54
  • [9] Mining partial periodic correlations in time series
    Zhen He
    X. Sean Wang
    Byung Suk Lee
    Alan C. H. Ling
    [J]. Knowledge and Information Systems, 2008, 15 : 31 - 54
  • [10] Inference on Multi-level Partial Correlations Based on Multi-subject Time Series Data
    Qiu, Yumou
    Zhou, Xiao-Hua
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 2268 - 2282