Inference of partial correlations of a multivariate Gaussian time series

被引:0
|
作者
Dilernia, A. S. [1 ]
Fiecas, M. [2 ]
Zhang, L. [2 ]
机构
[1] Grand Valley State Univ, Dept Stat, Allendale, MI 49401 USA
[2] Univ Minnesota, Div Biostat, Minneapolis, MN 55455 USA
关键词
Autocorrelation; Partial correlation; Quadratic form; Taylor series;
D O I
10.1093/biomet/asae012
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We derive an asymptotic joint distribution and novel covariance estimator for the partial correlations of a multivariate Gaussian time series given mild regularity conditions. Using our derived asymptotic distribution, we develop a Wald confidence interval and testing procedure for inference of individual partial correlations for time series data. Through simulation we demonstrate that our proposed confidence interval attains higher coverage rates, and our testing procedure attains false positive rates closer to the nominal levels than approaches that assume independent observations when autocorrelation is present.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Gaussian inference in AR(1) time series with or without a unit root
    Phillips, Peter C. B.
    Han, Chirok
    [J]. ECONOMETRIC THEORY, 2008, 24 (03) : 631 - 650
  • [22] Local Gaussian Process Model Inference Classification for Time Series Data
    Berns, Fabian
    Strueber, Joschka Hannes
    Beecks, Christian
    [J]. 33RD INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM 2021), 2020, : 209 - 213
  • [23] Modeling of Multivariate Time Series Using Variable Selection and Gaussian Process
    Ren Weijie
    Han Min
    [J]. 2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 5071 - 5074
  • [24] Partial mutual information for coupling analysis of multivariate time series
    Frenzel, Stefan
    Pompe, Bernd
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (20)
  • [25] CANONICAL PARTIAL AUTOCORRELATION FUNCTION OF A MULTIVARIATE TIME-SERIES
    DEGERINE, S
    [J]. ANNALS OF STATISTICS, 1990, 18 (02): : 961 - 971
  • [26] Adaptive greedy Gaussian segmentation algorithm based on multivariate time series
    Wang, Ling
    Li, Ze-Zhong
    [J]. Kongzhi yu Juece/Control and Decision, 2024, 39 (02): : 568 - 576
  • [27] SAMPLE PARTIAL AUTOCORRELATION FUNCTION OF A MULTIVARIATE TIME-SERIES
    DEGERINE, S
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 50 (02) : 294 - 313
  • [28] Multitask Gaussian Processes for Multivariate Physiological Time-Series Analysis
    Duerichen, Robert
    Pimentel, Marco A. F.
    Clifton, Lei
    Schweikard, Achim
    Clifton, David A.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (01) : 314 - 322
  • [29] Inference of Granger causal time-dependent influences in noisy multivariate time series
    Sommerlade, Linda
    Thiel, Marco
    Platt, Bettina
    Plano, Andrea
    Riedel, Gernot
    Grebogi, Celso
    Timmer, Jens
    Schelter, Bjoern
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2012, 203 (01) : 173 - 185
  • [30] Multivariate Volatility Analysis via Canonical Correlations for Financial Time Series
    Lee, Seung Yeon
    Hwang, S. Y.
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2014, 27 (07) : 1139 - 1149