A problem on the structure of Fr,chet spaces

被引:0
|
作者
Bonet, Jose [1 ]
机构
[1] Univ Politecn Valencia, IUMPA, E-46071 Valencia, Spain
关键词
Frechet spaces; continuous linear operators; hereditarily indecomposable spaces; hypercyclic operators; topologizable operators; HYPERCYCLIC OPERATORS; BANACH-SPACES;
D O I
10.5052/RACSAM.2010.26
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following open problem is stated: Is there a non-normable Fr,chet space E such that every continuous linear operator T on E has the form T = lambda I + S, where S maps a 0-neighbourhood of E into a bounded set? A few remarks and the relation of this question with other still open problems on operators between Fr,chet spaces are mentioned.
引用
下载
收藏
页码:427 / 434
页数:8
相关论文
共 50 条
  • [1] A problem on the structure of Fréchet spaces; [Un problema sobre la estructura de espacios de Fréchet]
    Bonet J.
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2010, 104 (2) : 427 - 434
  • [2] Productively Fréchet Spaces
    Francis Jordan
    Frédéric Mynard
    Czechoslovak Mathematical Journal, 2004, 54 : 981 - 990
  • [3] Surjectivity in Fréchet Spaces
    Milen Ivanov
    Nadia Zlateva
    Journal of Optimization Theory and Applications, 2019, 182 : 265 - 284
  • [4] Fréchet-Valued Real Analytic Functions on Fréchet Spaces
    Le Mau Hai
    Nguyen Van Khue
    Monatshefte für Mathematik, 2003, 139 : 285 - 293
  • [5] Caputo–Hadamard fractional differential Cauchy problem in Fréchet spaces
    Saïd Abbas
    Mouffak Benchohra
    Farida Berhoun
    Johnny Henderson
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2335 - 2344
  • [6] Stochastic calculus on Fréchet spaces
    Diego S. Ledesma
    Advances in Operator Theory, 2021, 6
  • [7] Fréchet spaces with unconditional base
    M. M. Dragilev
    P. A. Chalov
    Mathematical Notes, 2006, 80 : 27 - 30
  • [8] Neural networks in Fréchet spaces
    Fred Espen Benth
    Nils Detering
    Luca Galimberti
    Annals of Mathematics and Artificial Intelligence, 2023, 91 : 75 - 103
  • [9] Genericity of Fr,chet smooth spaces
    Kurka, Ondrej
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (02) : 371 - 406
  • [10] Resolutions of the identity in Fréchet spaces
    W. J. Ricker
    Integral Equations and Operator Theory, 2001, 41 : 63 - 73