A problem on the structure of Fr,chet spaces

被引:0
|
作者
Bonet, Jose [1 ]
机构
[1] Univ Politecn Valencia, IUMPA, E-46071 Valencia, Spain
关键词
Frechet spaces; continuous linear operators; hereditarily indecomposable spaces; hypercyclic operators; topologizable operators; HYPERCYCLIC OPERATORS; BANACH-SPACES;
D O I
10.5052/RACSAM.2010.26
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following open problem is stated: Is there a non-normable Fr,chet space E such that every continuous linear operator T on E has the form T = lambda I + S, where S maps a 0-neighbourhood of E into a bounded set? A few remarks and the relation of this question with other still open problems on operators between Fr,chet spaces are mentioned.
引用
收藏
页码:427 / 434
页数:8
相关论文
共 50 条
  • [31] Uniformities of Fréchet-Nikodym Type on Vitali Spaces
    Maria Gabriella Graziano
    Semigroup Forum, 2000, 61 : 91 - 115
  • [32] Sufficient sets in weighted Fr,chet spaces of entire functions
    Abanin, A. V.
    Varziev, V. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (04) : CP5 - 587
  • [33] A quantitative version of Krein’s theorems for Fréchet spaces
    Carlos Angosto
    Jerzy Ka̧kol
    Albert Kubzdela
    Manuel López-Pellicer
    Archiv der Mathematik, 2013, 101 : 65 - 77
  • [34] Geometric properties of Fréchet spaces and selection of basis sequences
    V. P. Kondakov
    Mathematical Notes, 1999, 66 : 82 - 88
  • [35] Hypercyclic Subspaces on Fréchet Spaces Without Continuous Norm
    Quentin Menet
    Integral Equations and Operator Theory, 2013, 77 : 489 - 520
  • [36] PERTURBATION THEORY OF OPERATOR EQUATIONS IN THE FR,CHET AND HILBERT SPACES
    Boichuk, A. A.
    Pokutnyi, A. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2016, 67 (09) : 1327 - 1335
  • [37] Characterization of splitting for Fréchet–Hilbert spaces via interpolation
    Paweł Domański
    Mieczysław Mastyło
    Mathematische Annalen, 2007, 339 : 317 - 340
  • [39] An Inverse Mapping Theorem in Fréchet-Montel Spaces
    Radek Cibulka
    Marián Fabian
    Tomáš Roubal
    Set-Valued and Variational Analysis, 2020, 28 : 195 - 208
  • [40] On Fréchet differentiability of Lipschitzian functions on spaces with gaussian measures
    V. I. Bogachev
    E. Priola
    N. A. Tolmachev
    Doklady Mathematics, 2007, 75 : 353 - 357