A problem on the structure of Fr,chet spaces

被引:0
|
作者
Bonet, Jose [1 ]
机构
[1] Univ Politecn Valencia, IUMPA, E-46071 Valencia, Spain
关键词
Frechet spaces; continuous linear operators; hereditarily indecomposable spaces; hypercyclic operators; topologizable operators; HYPERCYCLIC OPERATORS; BANACH-SPACES;
D O I
10.5052/RACSAM.2010.26
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following open problem is stated: Is there a non-normable Fr,chet space E such that every continuous linear operator T on E has the form T = lambda I + S, where S maps a 0-neighbourhood of E into a bounded set? A few remarks and the relation of this question with other still open problems on operators between Fr,chet spaces are mentioned.
引用
收藏
页码:427 / 434
页数:8
相关论文
共 50 条
  • [21] Fréchet spaces of general Dirichlet series
    Andreas Defant
    Tomás Fernández Vidal
    Ingo Schoolmann
    Pablo Sevilla-Peris
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [22] Disjoint Distributional Chaos in Fréchet Spaces
    Marko Kostić
    Results in Mathematics, 2020, 75
  • [23] Inverse mapping theorem in Fréchet spaces
    Milen Ivanov
    Nadia Zlateva
    Journal of Optimization Theory and Applications, 2021, 190 : 300 - 315
  • [24] On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals
    Kuryliak A.O.
    Sheremeta M.M.
    Journal of Mathematical Sciences, 2023, 270 (2) : 280 - 293
  • [25] On the absence of stability of bases in some Fréchet spaces
    A. Goncharov
    Analysis Mathematica, 2020, 46 : 761 - 768
  • [26] Real analytic curves in Fréchet spaces and their duals
    José Bonet
    Pawel Domański
    Monatshefte für Mathematik, 1998, 126 : 13 - 36
  • [27] Non-quasianalytic curves in Fréchet spaces
    Jordi Juan-Huguet
    Monatshefte für Mathematik, 2011, 164 : 427 - 437
  • [28] The compact approximation property for spaces of holomorphic mappings on Fréchet spaces
    E. Çalışkan
    P. Rueda
    Revista Matemática Complutense, 2021, 34 : 185 - 201
  • [29] Spectra of Continuous Linear Operators on Separable Fréchet Spaces
    S. A. Shkarin
    Mathematical Notes, 2001, 69 : 587 - 590
  • [30] Perturbation Theory of Operator Equations in the FréChet and Hilbert Spaces
    A. A. Boichuk
    A. A. Pokutnyi
    Ukrainian Mathematical Journal, 2016, 67 : 1327 - 1335