Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies

被引:0
|
作者
Sayedali Shetab Boushehri
Katharina Essig
Nikolaos-Kosmas Chlis
Sylvia Herter
Marina Bacac
Fabian J. Theis
Elke Glasmacher
Carsten Marr
Fabian Schmich
机构
[1] German Research Center for Environmental Health,Institute of AI for Health, Helmholtz Zentrum München
[2] German Research Center for Environmental Health,Institute of Computational Biology, Helmholtz Zentrum München
[3] Department of Mathematics,Technical University of Munich
[4] Roche Innovation Center Munich,Data & Analytics (D&A), Roche Pharma Research and Early Development (pRED)
[5] Roche Innovation Center Munich,Large Molecule Research (LMR), Roche Pharma Research and Early Development (pRED)
[6] Roche Pharma Research and Early Development (pRED),Roche Innovation Center Zurich
[7] Roche Innovation Center Munich,Research and Early Development (RED), Roche Diagnostics Solutions
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Therapeutic antibodies are widely used to treat severe diseases. Most of them alter immune cells and act within the immunological synapse; an essential cell-to-cell interaction to direct the humoral immune response. Although many antibody designs are generated and evaluated, a high-throughput tool for systematic antibody characterization and prediction of function is lacking. Here, we introduce the first comprehensive open-source framework, scifAI (single-cell imaging flow cytometry AI), for preprocessing, feature engineering, and explainable, predictive machine learning on imaging flow cytometry (IFC) data. Additionally, we generate the largest publicly available IFC dataset of the human immunological synapse containing over 2.8 million images. Using scifAI, we analyze class frequency and morphological changes under different immune stimulation. T cell cytokine production across multiple donors and therapeutic antibodies is quantitatively predicted in vitro, linking morphological features with function and demonstrating the potential to significantly impact antibody design. scifAI is universally applicable to IFC data. Given its modular architecture, it is straightforward to incorporate into existing workflows and analysis pipelines, e.g., for rapid antibody screening and functional characterization.
引用
收藏
相关论文
共 50 条
  • [1] Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies
    Boushehri, Sayedali Shetab
    Essig, Katharina
    Chlis, Nikolaos-Kosmas
    Herter, Sylvia
    Bacac, Marina
    Theis, Fabian J.
    Glasmacher, Elke
    Marr, Carsten
    Schmich, Fabian
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [2] Morphological and molecular breast cancer profiling through explainable machine learning
    Alexander Binder
    Michael Bockmayr
    Miriam Hägele
    Stephan Wienert
    Daniel Heim
    Katharina Hellweg
    Masaru Ishii
    Albrecht Stenzinger
    Andreas Hocke
    Carsten Denkert
    Klaus-Robert Müller
    Frederick Klauschen
    Nature Machine Intelligence, 2021, 3 : 355 - 366
  • [3] Morphological and molecular breast cancer profiling through explainable machine learning
    Binder, Alexander
    Bockmayr, Michael
    Hagele, Miriam
    Wienert, Stephan
    Heim, Daniel
    Hellweg, Katharina
    Ishii, Masaru
    Stenzinger, Albrecht
    Hocke, Andreas
    Denkert, Carsten
    Mueller, Klaus-Robert
    Klauschen, Frederick
    NATURE MACHINE INTELLIGENCE, 2021, 3 (04) : 355 - 366
  • [4] Machine Learning-Based Immunological Synapse Quantification to Predict CAR T Efficacy
    Liu, Dongfang
    MOLECULAR THERAPY, 2020, 28 (04) : 369 - 370
  • [5] Identification of lysosomotropism using explainable machine learning and morphological profiling cell painting data
    Tandon, Aishvarya
    Santura, Anna
    Waldmann, Herbert
    Pahl, Axel
    Czodrowski, Paul
    RSC MEDICINAL CHEMISTRY, 2024, 15 (08): : 2677 - 2691
  • [6] Immunological Profiling of Paediatric Inflammatory Bowel Disease Using Unsupervised Machine Learning
    Coelho, Tracy
    Mossotto, Enrico
    Gao, Yifang
    Haggarty, Rachel
    Ashton, James J.
    Batra, Akshay
    Stafford, Imogen S.
    Beattie, Robert M.
    Williams, Anthony P.
    Ennis, Sarah
    JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, 2020, 70 (06): : 833 - 840
  • [7] Explainable machine learning for predicting stomatal conductance across multiple plant functional types
    Gaur, Srishti
    Drewry, Darren T.
    AGRICULTURAL AND FOREST METEOROLOGY, 2024, 350
  • [8] Biomarker development from functional precision medicine datasets via explainable machine learning.
    Berlow, Noah
    de la Rocha, Arlet M. Acanda
    Fader, Maggie Eidson
    Coats, Ebony
    Saghira, Cima
    Espinal, Paula
    Galano, Jeanette
    Khatib, Ziad
    Abdella, Haneen
    Maher, Ossama
    Andrade-Feraud, Cristina
    Holcomb, Baylee
    Ghurani, Yasmin
    Rimblas, Lilliam
    Guilarte, Tomas
    Hu, Nan
    Salyakina, Daria
    Azzam, Diana
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [9] Broad functional profiling of fission yeast proteins using phenomics and machine learning
    Rodriguez-Lopez, Maria
    Bordin, Nicola
    Lees, Jon
    Scholes, Harry
    Hassan, Shaimaa
    Saintain, Quentin
    Kamrad, Stephan
    Orengo, Christine
    Baehler, Juerg
    ELIFE, 2023, 12
  • [10] In vitro machine learning-based CAR T immunological synapse quality measurements correlate with patient clinical outcomes
    Naghizadeh, Alireza
    Tsao, Wei-Chung
    Cho, Jong Hyun
    Xu, Hongye
    Mohamed, Mohab
    Li, Dali
    Xiong, Wei
    Metaxas, Dimitri
    Ramos, Carlos A.
    Liu, Dongfang
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (03)