Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies

被引:0
|
作者
Sayedali Shetab Boushehri
Katharina Essig
Nikolaos-Kosmas Chlis
Sylvia Herter
Marina Bacac
Fabian J. Theis
Elke Glasmacher
Carsten Marr
Fabian Schmich
机构
[1] German Research Center for Environmental Health,Institute of AI for Health, Helmholtz Zentrum München
[2] German Research Center for Environmental Health,Institute of Computational Biology, Helmholtz Zentrum München
[3] Department of Mathematics,Technical University of Munich
[4] Roche Innovation Center Munich,Data & Analytics (D&A), Roche Pharma Research and Early Development (pRED)
[5] Roche Innovation Center Munich,Large Molecule Research (LMR), Roche Pharma Research and Early Development (pRED)
[6] Roche Pharma Research and Early Development (pRED),Roche Innovation Center Zurich
[7] Roche Innovation Center Munich,Research and Early Development (RED), Roche Diagnostics Solutions
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Therapeutic antibodies are widely used to treat severe diseases. Most of them alter immune cells and act within the immunological synapse; an essential cell-to-cell interaction to direct the humoral immune response. Although many antibody designs are generated and evaluated, a high-throughput tool for systematic antibody characterization and prediction of function is lacking. Here, we introduce the first comprehensive open-source framework, scifAI (single-cell imaging flow cytometry AI), for preprocessing, feature engineering, and explainable, predictive machine learning on imaging flow cytometry (IFC) data. Additionally, we generate the largest publicly available IFC dataset of the human immunological synapse containing over 2.8 million images. Using scifAI, we analyze class frequency and morphological changes under different immune stimulation. T cell cytokine production across multiple donors and therapeutic antibodies is quantitatively predicted in vitro, linking morphological features with function and demonstrating the potential to significantly impact antibody design. scifAI is universally applicable to IFC data. Given its modular architecture, it is straightforward to incorporate into existing workflows and analysis pipelines, e.g., for rapid antibody screening and functional characterization.
引用
收藏
相关论文
共 50 条
  • [31] The mechanistic functional landscape of retinitis pigmentosa: a machine learning-driven approach to therapeutic target discovery
    Esteban-Medina, Marina
    Loucera, Carlos
    Rian, Kinza
    Velasco, Sheyla
    Olivares-Gonzalez, Lorena
    Rodrigo, Regina
    Dopazo, Joaquin
    Pena-Chilet, Maria
    JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [32] The mechanistic functional landscape of retinitis pigmentosa: a machine learning-driven approach to therapeutic target discovery
    Marina Esteban-Medina
    Carlos Loucera
    Kinza Rian
    Sheyla Velasco
    Lorena Olivares-González
    Regina Rodrigo
    Joaquin Dopazo
    Maria Peña-Chilet
    Journal of Translational Medicine, 22
  • [33] Profiling and Functional Characterization of Post-Transplant Circulating Antibodies in Kidney Transplantation Using Donor Endothelial Cells.
    Charreau, B.
    Canet, E.
    Gerard, N.
    Karam, G.
    Giral, M.
    Coupel, S.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2012, 12 : 278 - 278
  • [34] Therapeutic Antibodies to Human L1CAM: Functional Characterization and Application in a Mouse Model for Ovarian Carcinoma
    Wolterink, Silke
    Moldenhauer, Gerhard
    Fogel, Mina
    Kiefel, Helena
    Pfeifer, Marco
    Luettgau, Sandra
    Gouveia, Ricardo
    Costa, Julia
    Endell, Jan
    Moebius, Ulrich
    Altevogt, Peter
    CANCER RESEARCH, 2010, 70 (06) : 2504 - 2515
  • [35] Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning
    Makowski, Emily K.
    Wang, Tiexin
    Zupancic, Jennifer M.
    Huang, Jie
    Wu, Lina
    Schardt, John S.
    De Groot, Anne S.
    Elkins, Stephanie L.
    Martin, William D.
    Tessier, Peter M.
    NATURE BIOMEDICAL ENGINEERING, 2024, 8 (01) : 45 - 56
  • [36] Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning
    Emily K. Makowski
    Tiexin Wang
    Jennifer M. Zupancic
    Jie Huang
    Lina Wu
    John S. Schardt
    Anne S. De Groot
    Stephanie L. Elkins
    William D. Martin
    Peter M. Tessier
    Nature Biomedical Engineering, 2024, 8 : 45 - 56
  • [37] Transcriptomic profiling and machine learning reveal novel RNA signatures for enhanced molecular characterization of Hashimoto’s thyroiditis
    Zefeng Li
    Qiuyu Xu
    Fengxu Xiao
    Yipeng Cui
    Jue jiang
    Qi Zhou
    Jiangwei Yan
    Yu Sun
    Miao Li
    Scientific Reports, 15 (1)
  • [38] Identification and immunological characterization of endoplasmic reticulum stress-related molecular subtypes in bronchopulmonary dysplasia based on machine learning
    Tao, Ziyu
    Mao, Yan
    Hu, Yifang
    Tang, Xinfang
    Wang, Jimei
    Zeng, Ni
    Bao, Yunlei
    Luo, Fei
    Wu, Chuyan
    Jiang, Feng
    FRONTIERS IN PHYSIOLOGY, 2023, 13
  • [39] Integrated machine learning-driven disulfidptosis profiling: CYFIP1 and EMILIN1 as therapeutic nodes in neuroblastoma
    Zhang Mengzhen
    Hou Xinwei
    Tan Zeheng
    Li Nan
    Yang Yang
    Yang Huirong
    Fan Kaisi
    Ding Xiaoting
    Yang Liucheng
    Wu Kai
    Journal of Cancer Research and Clinical Oncology, 150
  • [40] Integrated machine learning-driven disulfidptosis profiling: CYFIP1 and EMILIN1 as therapeutic nodes in neuroblastoma
    Zhang, Mengzhen
    Hou, Xinwei
    Tan, Zeheng
    Nan, Li
    Yang, Yang
    Yang, Huirong
    Fan, Kaisi
    Ding, Xiaoting
    Yang, Liucheng
    Kai, Wu
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2024, 150 (03)