Morphological and molecular breast cancer profiling through explainable machine learning

被引:77
|
作者
Binder, Alexander [1 ,2 ,3 ]
Bockmayr, Michael [4 ,5 ,6 ]
Hagele, Miriam [1 ,7 ]
Wienert, Stephan [4 ,5 ]
Heim, Daniel [4 ,5 ]
Hellweg, Katharina [5 ,8 ]
Ishii, Masaru [9 ]
Stenzinger, Albrecht [10 ]
Hocke, Andreas [5 ,8 ]
Denkert, Carsten [11 ]
Mueller, Klaus-Robert [1 ,12 ,13 ,14 ]
Klauschen, Frederick [4 ,5 ,14 ,15 ,16 ]
机构
[1] Tech Univ Berlin, Machine Learning Grp, Berlin, Germany
[2] Singapore Univ Technol & Design, ISTD Pillar, Singapore, Singapore
[3] Univ Oslo, Dept Informat, Machine Learning Sect, Oslo, Norway
[4] Charite Univ Med Berlin, Inst Pathol, Syst Pathol Lab, Berlin, Germany
[5] Berlin Inst Hlth, Berlin, Germany
[6] Univ Med Ctr Hamburg Eppendorf, Dept Pediat Hematol & Oncol, Hamburg, Germany
[7] Aignostics GmbH, Berlin, Germany
[8] Charite Univ Med Berlin, Dept Internal Med Infect Dis & Pulmonol, Berlin, Germany
[9] Osaka Univ, Grad Sch Med & Frontier Biosci, Dept Immunol & Cell Biol, Osaka, Japan
[10] Heidelberg Univ, Inst Pathol, Heidelberg, Germany
[11] Univ Marburg, Inst Pathol, Marburg, Germany
[12] Saarland Informat Campus, Max Planck Inst Informat, Saarbrucken, Germany
[13] Korea Univ, Dept Artificial Intelligence, Seoul, South Korea
[14] Berlin Inst Fdn Learning & Data BIFOLD, Berlin, Germany
[15] German Canc Consortium DKTK, Partner Site Berlin, Berlin, Germany
[16] Ludwig Maximilians Univ Munchen, Inst Pathol, Munich, Germany
基金
欧洲研究理事会;
关键词
40;
D O I
10.1038/s42256-021-00303-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in cancer research and diagnostics largely rely on new developments in microscopic or molecular profiling techniques, offering high levels of detail with respect to either spatial or molecular features, but usually not both. Here, we present an explainable machine-learning approach for the integrated profiling of morphological, molecular and clinical features from breast cancer histology. First, our approach allows for the robust detection of cancer cells and tumour-infiltrating lymphocytes in histological images, providing precise heatmap visualizations explaining the classifier decisions. Second, molecular features, including DNA methylation, gene expression, copy number variations, somatic mutations and proteins are predicted from histology. Molecular predictions reach balanced accuracies up to 78%, whereas accuracies of over 95% can be achieved for subgroups of patients. Finally, our explainable AI approach allows assessment of the link between morphological and molecular cancer properties. The resulting computational multiplex-histology analysis can help promote basic cancer research and precision medicine through an integrated diagnostic scoring of histological, clinical and molecular features. Cancers are complex diseases that are increasingly studied using a diverse set of omics data. At the same time, histological images show the interaction of cells, which is not visible with bulk omics methods. Binder and colleagues present a method to learn from both kinds of data, such that molecular markers can be associated with visible patterns in the tissue samples and be used for more accurate breast cancer diagnosis.
引用
收藏
页码:355 / 366
页数:12
相关论文
共 50 条
  • [1] Morphological and molecular breast cancer profiling through explainable machine learning
    Alexander Binder
    Michael Bockmayr
    Miriam Hägele
    Stephan Wienert
    Daniel Heim
    Katharina Hellweg
    Masaru Ishii
    Albrecht Stenzinger
    Andreas Hocke
    Carsten Denkert
    Klaus-Robert Müller
    Frederick Klauschen
    [J]. Nature Machine Intelligence, 2021, 3 : 355 - 366
  • [2] Identification of lysosomotropism using explainable machine learning and morphological profiling cell painting data
    Tandon, Aishvarya
    Santura, Anna
    Waldmann, Herbert
    Pahl, Axel
    Czodrowski, Paul
    [J]. RSC MEDICINAL CHEMISTRY, 2024, 15 (08): : 2677 - 2691
  • [3] Morphological Subtyping of Breast Cancer using Machine Learning
    Hanna, M.
    Lee, M.
    Bozkurt, A.
    Hamilton, P.
    Godrich, R.
    Casson, A.
    Raciti, P.
    Sue, J.
    Viret, J.
    Lee, D.
    Grady, L.
    Rothrock, B.
    Dogdas, B.
    Fuchs, T.
    Reis-Filho, J.
    Kanan, C.
    [J]. JOURNAL OF PATHOLOGY, 2021, 255 : S35 - S35
  • [4] Cancer Metastasis Prediction and Genomic Biomarker Identification through Machine Learning and eXplainable Artificial Intelligence in Breast Cancer Research
    Yagin, Burak
    Yagin, Fatma Hilal
    Colak, Cemil
    Inceoglu, Feyza
    Kadry, Seifedine
    Kim, Jungeun
    [J]. DIAGNOSTICS, 2023, 13 (21)
  • [5] Explainable machine learning of the breast cancer staging for designing smart biomarker sensors
    Idrees, Muhammad
    Sohail, Ayesha
    [J]. Sensors International, 2022, 3
  • [6] Explainable Machine Learning Explores Association Between Sarcopenia and Breast Cancer Distant Metastasis
    Qi, Hongzhuo
    An, Yunfei
    Hu, Xiaohui
    Miao, Shidi
    Li, Jing
    [J]. IEEE ACCESS, 2023, 11 : 65725 - 65738
  • [7] Explainable machine learning approach for cancer prediction through binarilization of RNA sequencing data
    Chen, Tianjie
    Kabir, Md Faisal
    [J]. PLOS ONE, 2024, 19 (05):
  • [8] Molecular Profiling of Breast Cancer
    Cyr, Amy E.
    Margenthaler, Julie A.
    [J]. SURGICAL ONCOLOGY CLINICS OF NORTH AMERICA, 2014, 23 (03) : 451 - +
  • [9] Molecular profiling in breast cancer
    Morris, Shannon R.
    Carey, Lisa A.
    [J]. REVIEWS IN ENDOCRINE & METABOLIC DISORDERS, 2007, 8 (03): : 185 - 198
  • [10] Molecular profiling of breast cancer
    Paik, Soonmyung
    [J]. CURRENT OPINION IN OBSTETRICS & GYNECOLOGY, 2006, 18 (01) : 59 - 63