On the Convexity and Concavity of Generalized Complete Elliptic Integral of the First Kind

被引:0
|
作者
Ya-jun Chen
Tie-hong Zhao
机构
[1] Hangzhou Normal University,School of Mathematics
来源
Results in Mathematics | 2022年 / 77卷
关键词
Complete elliptic integrals; generalized complete elliptic integrals; convexity; concavity; 33E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the convexity (concavity) of the function x↦Ka(x)-log1+c/1-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\mapsto {{\,\mathrm{{{{\textsf {\textit{K}}}}}}\,}}_a(\sqrt{x})-\log \left( 1+c/\sqrt{1-x}\right) $$\end{document} on (0, 1) for a∈(0,1/2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in (0,1/2]$$\end{document} and c∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in (0,\infty )$$\end{document}, where Ka(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{{{{\textsf {\textit{K}}}}}}\,}}_a(r)$$\end{document} is the generalized complete elliptic integral of the first kind. This work is an extension of Yang and Tian (Appl Anal Discrete Math 13:240–260, 2019), and also gives a refinement of inequality (Yang and Tian 2019, 0.27) as an application.
引用
收藏
相关论文
共 50 条
  • [41] Several Absolutely Monotonic Functions Related to the Complete Elliptic Integral of the First Kind
    Jing-Feng Tian
    Zhen-Hang Yang
    [J]. Results in Mathematics, 2022, 77
  • [42] SHARP INEQUALITIES INVOLVING THE POWER MEAN AND COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND
    Chu, Y. M.
    Qiu, S. L.
    Wang, M. K.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) : 1489 - 1496
  • [43] The calculation of the complete elliptic integral of the first and second kind for large values of [k]
    van Veen, SC
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1942, 45 (1/5): : 171 - 175
  • [44] CONVEXITY AND MONOTONICITY FOR ELLIPTIC INTEGRALS OF THE FIRST KIND AND APPLICATIONS
    Yang, Zhen-Hang
    Tian, Jing-Feng
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2019, 13 (01) : 240 - 260
  • [45] On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind
    Yang, Zhen-Hang
    Qian, Wei-Mao
    Chu, Yu-Ming
    Zhang, Wen
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (02) : 1714 - 1726
  • [46] Concavity of the complete elliptic integrals of the second kind with respect to Holder means
    Chu, Yu-Ming
    Wang, Miao-Kun
    Jiang, Yue-Ping
    Qiu, Song-Liang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (02) : 637 - 642
  • [47] Several Absolutely Monotonic Functions Related to the Complete Elliptic Integral of the First Kind
    Tian, Jing-Feng
    Yang, Zhen-Hang
    [J]. RESULTS IN MATHEMATICS, 2022, 77 (03)
  • [48] Asymptotically sharp bounds for the complete p-elliptic integral of the first kind
    Huang, Ti-Ren
    Chen, Lu
    Chu, Yu -Ming
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2022, 51 (02) : 189 - 210
  • [49] BOUNDS FOR THE GENERALIZED ELLIPTIC INTEGRAL OF THE SECOND KIND
    ZHANG, X. I. A. O. H. U. I.
    XING, Z. H. I. X. I. A.
    [J]. MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 495 - 503
  • [50] FUNCTIONAL INEQUALITIES FOR GAUSSIAN HYPERGEOMETRIC FUNCTION AND GENERALIZED ELLIPTIC INTEGRAL OF THE FIRST KIND
    Tan, Shen-Yang
    Huang, Ti-Ren
    Chu, Yu-Ming
    [J]. MATHEMATICA SLOVACA, 2021, 71 (03) : 667 - 682