SHARP INEQUALITIES INVOLVING THE POWER MEAN AND COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND

被引:33
|
作者
Chu, Y. M. [1 ]
Qiu, S. L. [2 ]
Wang, M. K. [1 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
[2] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 313018, Zhejiang, Peoples R China
关键词
Complete elliptic integrals; power mean; inequality; HYPERGEOMETRIC-FUNCTIONS; FUNCTIONAL INEQUALITIES; MODULAR EQUATIONS; RAMANUJAN; LANDEN;
D O I
10.1216/RMJ-2013-43-5-1489
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that M-p(K(r), K(r')) >= K (root 2/2) and M-q(K(r), K(r')) <= K(root 2/2) for all r is an element of (0, 1) if and only if p >= 1 - 4[K(root 2/2)](4)/pi(2) = -3.789... and q <= (log 2)/[log(pi/2) - log K(root 2/2)] = -4.180..., where K(r) = integral(0)(pi/2)(1 - r(2) sin(2)theta) (1/2) d theta is the complete elliptic integral of the first kind, r' = root 1 - r(2), and M-p(x, y) is the power mean of order p of two positive numbers x and y.
引用
收藏
页码:1489 / 1496
页数:8
相关论文
共 50 条
  • [1] Sharp Power Mean Inequalities for the Generalized Elliptic Integral of the First Kind
    Miao-Kun Wang
    Zai-Yin He
    Yu-Ming Chu
    [J]. Computational Methods and Function Theory, 2020, 20 : 111 - 124
  • [2] Sharp Power Mean Inequalities for the Generalized Elliptic Integral of the First Kind
    Wang, Miao-Kun
    He, Zai-Yin
    Chu, Yu-Ming
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (01) : 111 - 124
  • [3] Sharp inequalities for the complete elliptic integral of the first kind
    Alzer, H
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 : 309 - 314
  • [4] A sharp double inequality involving generalized complete elliptic integral of the first kind
    Zhao, Tie-Hong
    Wang, Miao-Kun
    Chu, Yu-Ming
    [J]. AIMS MATHEMATICS, 2020, 5 (05): : 4512 - 4528
  • [5] Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind
    Yang, Zhen-Hang
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (03): : 929 - 936
  • [6] Convexity and Monotonicity Involving the Complete Elliptic Integral of the First Kind
    Jing-Feng Tian
    Zhen-Hang Yang
    [J]. Results in Mathematics, 2023, 78
  • [7] Convexity and Monotonicity Involving the Complete Elliptic Integral of the First Kind
    Tian, Jing-Feng
    Yang, Zhen-Hang
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (01)
  • [8] Sharp weighted Holder mean bounds for the complete elliptic integral of the second kind
    Wang, Miao-Kun
    He, Zai-Yin
    Zhao, Tie-Hong
    Bao, Qi
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (07) : 537 - 551
  • [9] Asymptotically sharp bounds for the complete p-elliptic integral of the first kind
    Huang, Ti-Ren
    Chen, Lu
    Chu, Yu -Ming
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2022, 51 (02) : 189 - 210
  • [10] Monotonicity and sharp inequalities related to complete (p, q)-elliptic integrals of the first kind
    Wang, Fei
    Qi, Feng
    [J]. COMPTES RENDUS MATHEMATIQUE, 2020, 358 (08) : 961 - 970