Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind

被引:17
|
作者
Yang, Zhen-Hang [1 ,2 ]
Chu, Yu-Ming [1 ]
Zhang, Xiao-Hui [3 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
[2] State Grid Zhejiang Elect Power Res Inst, Customer Serv Ctr, Hangzhou 310009, Zhejiang, Peoples R China
[3] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
来源
关键词
Gaussian hypergeometric function; complete elliptic integral; Stolarsky mean; MONOTONICITY;
D O I
10.22436/jnsa.010.03.06
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we prove that the double inequality 25/16 < epsilon(r)/S-5/2,S-2 (1, r ') < pi/2, holds for all r is an element of(0, 1) with the best possible constants 25/16 and pi/2, where r ' = (1 - r(2))(1/2),epsilon(r) = integral(pi/2)(0) root 1 - r(2) sin(2) (t) dt, is the complete elliptic integral of the second kind and S-p,(q) (a, b) - [q(a(p) - b(p))/(p(a(q) - b(q)))](1/(p - q)), is the Stolarsky mean of a and b. (C) 2017 All rights reserved.
引用
收藏
页码:929 / 936
页数:8
相关论文
共 50 条
  • [1] Sharp weighted Holder mean bounds for the complete elliptic integral of the second kind
    Wang, Miao-Kun
    He, Zai-Yin
    Zhao, Tie-Hong
    Bao, Qi
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (07) : 537 - 551
  • [2] Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean
    Yang, Zhen-Hang
    Chu, Yu-Ming
    Zhang, Wen
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [3] Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean
    Zhen-Hang Yang
    Yu-Ming Chu
    Wen Zhang
    [J]. Journal of Inequalities and Applications, 2016
  • [4] Asymptotically sharp bounds for the complete p-elliptic integral of the first kind
    Huang, Ti-Ren
    Chen, Lu
    Chu, Yu -Ming
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2022, 51 (02) : 189 - 210
  • [5] High accuracy asymptotic bounds for the complete elliptic integral of the second kind
    Yang, Zhen-Hang
    Chu, Yu-Ming
    Zhang, Wen
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 348 : 552 - 564
  • [6] SHARP INEQUALITIES INVOLVING THE POWER MEAN AND COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND
    Chu, Y. M.
    Qiu, S. L.
    Wang, M. K.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) : 1489 - 1496
  • [7] BOUNDS FOR THE GENERALIZED ELLIPTIC INTEGRAL OF THE SECOND KIND
    ZHANG, X. I. A. O. H. U. I.
    XING, Z. H. I. X. I. A.
    [J]. MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 495 - 503
  • [8] Sharp inequalities for the complete elliptic integral of the first kind
    Alzer, H
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 : 309 - 314
  • [9] Sharp bounds for the complete elliptic integral of the first kind in term of the inverse tangent hyperbolic function
    Yang, Zhen-Hang
    Tian, Jing-Feng
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2024,
  • [10] Approximations for the complete elliptic integral of the second Kind
    Qian, Wei-Mao
    Wang, Miao-Kun
    Xu, Hui-Zuo
    Chu, Yu-Ming
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)