A posteriori error estimates for a multi-scale finite-element method

被引:0
|
作者
Khallih Ahmed Blal
Brahim Allam
Zoubida Mghazli
机构
[1] Higher Institute of Accounting and Business Administration,Multidisciplinary Research Unit in Computer Science and Applied Mathematics
[2] Ibn Tofaïl University,Interdisciplinary Laboratory in Natural Resources and Environment (LIRNE), Faculty of Sciences
来源
关键词
Finite element; Multi-scale finite-element method; error estimates; Error indicators; 65N30; 65N50;
D O I
暂无
中图分类号
学科分类号
摘要
We are interested in the discretization of a diffusion problem with highly oscillating coefficient, by a multi-scale finite-element method (MsFEM). The objective of this method is to capture the multi-scale structure of the solution via local basis functions which contain the essential information on small scales. In this paper, we perform an a posteriori analysis of this discretization. The main result consists of building error indicators with respect to both small and large meshes used in this method. We present a numerical test in which the experiments are in good coherency with the results of analysis.
引用
收藏
相关论文
共 50 条
  • [31] A posteriori error estimates of finite element methods by preconditioning
    Li, Yuwen
    Zikatanov, Ludmil
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 91 : 192 - 201
  • [32] A posteriori error estimates for the virtual element method
    Andrea Cangiani
    Emmanuil H. Georgoulis
    Tristan Pryer
    Oliver J. Sutton
    [J]. Numerische Mathematik, 2017, 137 : 857 - 893
  • [33] A posteriori error estimates for nonconforming finite element schemes
    Kanschat, G
    Suttmeier, FT
    [J]. CALCOLO, 1999, 36 (03) : 129 - 141
  • [34] A posteriori error estimates¶for nonconforming finite element schemes
    Guido Kanschat
    Franz-Theo Suttmeier
    [J]. CALCOLO, 1999, 36 : 129 - 141
  • [35] On a posteriori error estimates for the linear triangular finite element
    Jikun Zhao
    Shaochun Chen
    [J]. Calcolo, 2014, 51 : 287 - 304
  • [36] A posteriori error estimates for the virtual element method
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Pryer, Tristan
    Sutton, Oliver J.
    [J]. NUMERISCHE MATHEMATIK, 2017, 137 (04) : 857 - 893
  • [37] A posteriori error estimates for nonconforming finite element methods
    Carsten Carstensen
    Sören Bartels
    Stefan Jansche
    [J]. Numerische Mathematik, 2002, 92 : 233 - 256
  • [38] A posteriori error estimates for nonconforming finite element methods
    Carstensen, C
    Bartels, S
    Jansche, S
    [J]. NUMERISCHE MATHEMATIK, 2002, 92 (02) : 233 - 256
  • [39] Superconvergence and a posteriori error estimates in finite element methods
    Chen, Chuanmiao
    Shi, Zhong-Ci
    Xie, Ziqing
    Zhang, Zhimin
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2006, 3 (03)
  • [40] A posteriori error estimates in finite element acoustic analysis
    Alonso, A
    Dello Russo, A
    Vampa, V
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 117 (02) : 105 - 119