Sasakian Structures on Tangent Sphere Bundles of Compact Rank-One Symmetric Spaces

被引:0
|
作者
J. C. González-Dávila
机构
[1] University of La Laguna,Departamento de Matemáticas, Estadística e Investigación Operativa
来源
关键词
Sasakian structures; tangent sphere bundles; compact rank-one symmetric spaces; projective Stiefel manifolds; restricted roots; 53C30; 53C35; 53D10;
D O I
暂无
中图分类号
学科分类号
摘要
A positive answer is given to the existence of Sasakian structures on the tangent sphere bundle of some Riemannian manifold whose sectional curvature is not constant. Among other results, it is proved that the tangent sphere bundle Tr(G/K),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{r}(G/K),$$\end{document} for any r>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r> 0,$$\end{document} of a compact rank-one symmetric space G/K,  not necessarily of constant sectional curvature, admits a unique G-invariant K-contact structure whose characteristic vector field is the standard field of T(G/K). Such a structure is in fact Sasakian and it can be expressed as an induced structure from an almost Hermitian structure on the punctured tangent bundle T(G/K)\{zerosection}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(G/K){\setminus } \{\text{ zero } \text{ section }\}.$$\end{document}
引用
收藏
相关论文
共 50 条