A positive answer is given to the existence of Sasakian structures on the tangent sphere bundle of some Riemannian manifold whose sectional curvature is not constant. Among other results, it is proved that the tangent sphere bundle Tr(G/K),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_{r}(G/K),$$\end{document} for any r>0,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r> 0,$$\end{document} of a compact rank-one symmetric space G/K, not necessarily of constant sectional curvature, admits a unique G-invariant K-contact structure whose characteristic vector field is the standard field of T(G/K). Such a structure is in fact Sasakian and it can be expressed as an induced structure from an almost Hermitian structure on the punctured tangent bundle T(G/K)\{zerosection}.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T(G/K){\setminus } \{\text{ zero } \text{ section }\}.$$\end{document}
机构:
Fukuoka Univ, Dept Appl Math, Fac Sci, Fukuoka 8140180, Japan
Japan Sci & Technol Agcy, CREST, Chiyoda Ku, Tokyo 1020075, JapanFukuoka Univ, Dept Appl Math, Fac Sci, Fukuoka 8140180, Japan
Hamada, Tatsuyoshi
Shiohama, Katsuhiro
论文数: 0引用数: 0
h-index: 0
机构:
Fukuoka Univ, Dept Appl Math, Fac Sci, Fukuoka 8140180, JapanFukuoka Univ, Dept Appl Math, Fac Sci, Fukuoka 8140180, Japan