Sasakian Structures on Tangent Sphere Bundles of Compact Rank-One Symmetric Spaces

被引:0
|
作者
J. C. González-Dávila
机构
[1] University of La Laguna,Departamento de Matemáticas, Estadística e Investigación Operativa
来源
关键词
Sasakian structures; tangent sphere bundles; compact rank-one symmetric spaces; projective Stiefel manifolds; restricted roots; 53C30; 53C35; 53D10;
D O I
暂无
中图分类号
学科分类号
摘要
A positive answer is given to the existence of Sasakian structures on the tangent sphere bundle of some Riemannian manifold whose sectional curvature is not constant. Among other results, it is proved that the tangent sphere bundle Tr(G/K),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{r}(G/K),$$\end{document} for any r>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r> 0,$$\end{document} of a compact rank-one symmetric space G/K,  not necessarily of constant sectional curvature, admits a unique G-invariant K-contact structure whose characteristic vector field is the standard field of T(G/K). Such a structure is in fact Sasakian and it can be expressed as an induced structure from an almost Hermitian structure on the punctured tangent bundle T(G/K)\{zerosection}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(G/K){\setminus } \{\text{ zero } \text{ section }\}.$$\end{document}
引用
收藏
相关论文
共 50 条
  • [31] LIPSCHITZ-SPACES ON COMPACT RANK ONE SYMMETRIC-SPACES
    COLZANI, L
    LECTURE NOTES IN MATHEMATICS, 1983, 992 : 139 - 160
  • [32] RANK-ONE MODIFICATION OF SYMMETRIC EIGENPROBLEM
    BUNCH, JR
    NIELSEN, CP
    SORENSEN, DC
    NUMERISCHE MATHEMATIK, 1978, 31 (01) : 31 - 48
  • [33] THE RANK-ONE THEOREM ON RCD SPACES
    Antonelli, Gioacchino
    Brena, Camillo
    Pasqualetto, Enrico
    ANALYSIS & PDE, 2024, 17 (08):
  • [34] Polar actions on compact rank one symmetric spaces are taut
    Leonardo Biliotti
    Claudio Gorodski
    Mathematische Zeitschrift, 2007, 255 : 335 - 342
  • [35] Polar actions on compact rank one symmetric spaces are taut
    Biliotti, Leonardo
    Gorodski, Claudio
    MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (02) : 335 - 342
  • [36] Riesz Transforms on Compact Riemannian Symmetric Spaces of Rank One
    Ciaurri, Oscar
    Roncal, Luz
    Stinga, Pablo Raul
    MILAN JOURNAL OF MATHEMATICS, 2015, 83 (02) : 345 - 370
  • [37] Riesz Transforms on Compact Riemannian Symmetric Spaces of Rank One
    Óscar Ciaurri
    Luz Roncal
    Pablo Raúl Stinga
    Milan Journal of Mathematics, 2015, 83 : 345 - 370
  • [38] COMPLETE REAL HYPERSURFACES IN COMPACT RANK ONE SYMMETRIC SPACES
    Hamada, Tatsuyoshi
    Shiohama, Katsuhiro
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (11) : 3905 - 3910
  • [39] Fractional integrals on compact Riemannian symmetric spaces of rank one
    Ciaurri, Oscar
    Roncal, Luz
    Stinga, Pablo Raul
    ADVANCES IN MATHEMATICS, 2013, 235 : 627 - 647
  • [40] SOME REMARKS ON THE SYMMETRIC RANK-ONE UPDATE
    CULLUM, J
    BRAYTON, RK
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 29 (04) : 493 - 519