Genuinely sharp heat kernel estimates on compact rank-one symmetric spaces, for Jacobi expansions, on a ball and on a simplex

被引:0
|
作者
Adam Nowak
Peter Sjögren
Tomasz Z. Szarek
机构
[1] Polish Academy of Sciences,Institute of Mathematics
[2] University of Gothenburg,Mathematical Sciences
[3] Chalmers University of Technology,Mathematical Sciences
[4] Rutgers University,Department of Mathematics
[5] University of Wrocław,Mathematical Institute
来源
Mathematische Annalen | 2021年 / 381卷
关键词
Primary 35K08; Secondary 58J35; 42C10;
D O I
暂无
中图分类号
学科分类号
摘要
We prove genuinely sharp two-sided global estimates for heat kernels on all compact rank-one symmetric spaces. This generalizes the authors’ recent result obtained for a Euclidean sphere of arbitrary dimension. Furthermore, similar heat kernel bounds are shown in the context of classical Jacobi expansions, on a ball and on a simplex. These results are more precise than the qualitatively sharp Gaussian estimates proved recently by several authors.
引用
收藏
页码:1455 / 1476
页数:21
相关论文
共 15 条