Stress-Induced Variability Studies in Tri-Gate FinFETs with Source/Drain Stressor at 7 nm Technology Nodes

被引:0
|
作者
T. P. Dash
J. Jena
E. Mohapatra
S. Dey
S. Das
C. K. Maiti
机构
[1] Siksha ‘O’ Anusandhan (Deemed to be University),Department of Electronics and Communication Engineering
来源
关键词
Fin height; gate length; fin width; mechanical stress; density gradient model; quantum correction; metal gate granularity (MGG); random discrete dopant (RDD); threshold voltage; epitaxially grown SiGe (e-SiGe); source/drain stressor;
D O I
暂无
中图分类号
学科分类号
摘要
The epitaxially grown SiGe source/drain stressor (e-SiGe) technique has emerged to be a consistent performance booster for advanced devices below the 14 nm technology node. At nanoscale, the omnipresent residual stress is now becoming an important source of variability in advanced VLSI technologies that influence the circuit performance. Also, in deeply-scaled technologies, process and environment variations become other sources of variabilities. In this paper, we study the stress-induced variability in aggressively scaled (at 7 N) Si-channel FinFETs with epitaxially grown SiGe stressors in the source and drain regions. The stress distribution analysis is performed with the help of Technology CAD mechanical stress simulations. At first, we calibrate our simulation results with available experimental data. We generate the stress maps in FinFETs with various scaled dimensions of fin length, height and width. The effects of residual strain/stress on variability due to metal gate granularity (MGG) and random discrete dopant (RDD) in strain-engineered FinFETs (with 50 configurations) have been investigated. Furthermore, the device threshold voltage variation due to RDD and MGG are critically examined. Finally, we calculate the mean and standard deviation of these parameters (QQ plots) to quantify the variability.
引用
收藏
页码:5348 / 5362
页数:14
相关论文
共 11 条
  • [1] Stress-Induced Variability Studies in Tri-Gate FinFETs with Source/Drain Stressor at 7nm Technology Nodes
    Dash, T. P.
    Jena, J.
    Mohapatra, E.
    Dey, S.
    Das, S.
    Maiti, C. K.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (08) : 5348 - 5362
  • [2] Impact of strain and source/drain engineering on the low frequency noise behaviour in n-channel tri-gate FinFETs
    Guo, W.
    Cretu, B.
    Routoure, J. -M.
    Carin, R.
    Simoen, E.
    Mercha, A.
    Collaert, N.
    Put, S.
    Claeys, C.
    [J]. SOLID-STATE ELECTRONICS, 2008, 52 (12) : 1889 - 1894
  • [3] Source/drain stressor design for advanced devices at 7 nm technology node
    Dash T.P.
    Dey S.
    Das S.
    Jena J.
    Mahapatra E.
    Maiti C.K.
    [J]. Nanoscience and Nanotechnology - Asia, 2020, 10 (04): : 447 - 456
  • [4] P-channel tri-gate FinFETs featuring Ni1-yPtySiGe source/drain contacts for enhanced drive current performance
    Lee, Rinus Tek-Po
    Tan, Kian-Ming
    Lim, Andy Eu-Jin
    Liow, Tsung-Yang
    Samudra, Ganesh S.
    Chi, Dong-Zhi
    Yeo, Yee-Chia
    [J]. IEEE ELECTRON DEVICE LETTERS, 2008, 29 (05) : 438 - 441
  • [5] STI and eSiGe source/drain epitaxy induced stress modeling in 28 nm technology with replacement gate (RMG) process
    Jang, Doyoung
    Bardon, Marie Garcia
    Yakimets, Dmitry
    Miyaguchi, Kenichi
    De Keersgieter, An
    Chiarella, Thomas
    Ritzenthaler, Romain
    Dehan, Morin
    Mercha, Abdelkarim
    [J]. 2013 PROCEEDINGS OF THE EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2013, : 159 - 162
  • [6] Interplay Between Process-Induced and Statistical Variability in 14-nm CMOS Technology Double-Gate SOI FinFETs
    Wang, Xingsheng
    Cheng, Binjie
    Brown, Andrew Robert
    Millar, Campbell
    Kuang, Jente B.
    Nassif, Sani
    Asenov, Asen
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (08) : 2485 - 2492
  • [7] Investigation of the Effects and the Random-Dopant-Induced Variations of Source/Drain Extension of 7-nm Strained SiGe n-Type FinFETs
    Liu, Keng-Ming
    Chen, En-Ching
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (02) : 847 - 854
  • [8] Reliability Studies of a 22nm SoC Platform Technology Featuring 3-D Tri-Gate, Optimized for Ultra Low Power, High Performance and High Density Application
    Rahman, A.
    Bai, P.
    Curello, G.
    Hicks, J.
    Jan, C. -H.
    Jamil, M.
    Park, J.
    Phoa, K.
    Rahman, M. S.
    Tsai, C.
    Woolery, B.
    Yeh, J. -Y.
    [J]. 2013 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2013,
  • [9] High-performance logic transistor DC benchmarking toward 7 nm technology-node between III-V and Si tri-gate n-MOSFETs using virtual-source injection velocity model
    Baek, Rock-Hyun
    Kim, Jin Su
    Kim, Do-Kywn
    Kim, Taewoo
    Kim, Dae-Hyun
    [J]. SOLID-STATE ELECTRONICS, 2016, 116 : 100 - 103
  • [10] High Gamma Value 3D-Stackable HK/MG-Stacked Tri-Gate Nanowire Poly-Si FETs With Embedded Source/Drain and Back Gate Using Low Thermal Budget Green Nanosecond Laser Crystallization Technology
    Yang, Chih-Chao
    Huang, W. -H.
    Hsieh, T. -Y.
    Wu, Tsung-Ta
    Wang, Hsing-Hsiang
    Shen, Chang-Hong
    Yeh, Wen-Kuan
    Shiu, Jung-Hau
    Chen, Yu-Hsiu
    Wu, Meng-Chyi
    Shieh, Jia-Min
    [J]. IEEE ELECTRON DEVICE LETTERS, 2016, 37 (05) : 533 - 536