Bi-primitive 2-arc-transitive bi-Cayley graphs

被引:0
|
作者
Jing Jian Li
Xiao Qian Zhang
Jin-Xin Zhou
机构
[1] Guangxi University,School of Mathematics and Information Science, Center for Applied Mathematics of Guangxi
[2] Beijing Jiaotong University,School of Mathematics and Statistics
来源
关键词
Bi-Cayley graph; Biprimitive; 2-arc-transitive; 05C25; 20B25;
D O I
暂无
中图分类号
学科分类号
摘要
A bipartite graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a bi-Cayley graph over a group H if H⩽AutΓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\leqslant \textrm{Aut}\Gamma $$\end{document} acts regularly on each part of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. A bi-Cayley graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is said to be a normal bi-Cayley graph over H if H⊴AutΓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\unlhd \textrm{Aut}\Gamma $$\end{document}, and bi-primitive if the bipartition preserving subgroup of AutΓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Aut}\Gamma $$\end{document} acts primitively on each part of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. In this paper, a classification is given for 2-arc-transitive bi-Cayley graphs which are bi-primitive and non-normal.
引用
收藏
页码:711 / 734
页数:23
相关论文
共 50 条
  • [1] Bi-primitive 2-arc-transitive bi-Cayley graphs
    Li, Jing Jian
    Zhang, Xiao Qian
    Zhou, Jin-Xin
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (03) : 711 - 734
  • [2] On 2-arc-transitive bi-Cayley graphs of finite simple groups
    Li, Jing Jian
    Wang, Yu
    Zhou, Jin-Xin
    [J]. DISCRETE MATHEMATICS, 2024, 347 (06)
  • [3] Edge-transitive bi-Cayley graphs
    Conder, Marston
    Zhou, Jin-Xin
    Feng, Yan-Quan
    Zhang, Mi-Mi
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 264 - 306
  • [4] Arc-transitive Cubic Abelian bi-Cayley Graphs and BCI-graphs
    Koike, Hiroki
    Kovacs, Istvan
    [J]. FILOMAT, 2016, 30 (02) : 321 - 331
  • [5] On 2-arc-transitive Cayley graphs of Abelian groups
    Potocnik, P
    [J]. DISCRETE MATHEMATICS, 2002, 244 (1-3) : 417 - 421
  • [6] The automorphisms of bi-Cayley graphs
    Zhou, Jin-Xin
    Feng, Yan-Quan
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 504 - 532
  • [7] 2-Arc-transitive Cayley graphs on alternating groups
    Pan, Jiangmin
    Xia, Binzhou
    Yin, Fugang
    [J]. JOURNAL OF ALGEBRA, 2022, 610 : 655 - 683
  • [8] Connectivity of Bi-Cayley graphs
    Liang, Xiaodong
    Meng, Jixiang
    [J]. ARS COMBINATORIA, 2008, 88 : 27 - 32
  • [9] ON BI-CAYLEY GRAPHS OF GROUPS
    Hao, Yifei
    [J]. ARS COMBINATORIA, 2019, 146 : 255 - 271
  • [10] Finite 2-arc-transitive abelian Cayley graphs
    Li, Cai Heng
    Pan, Jiangmin
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (01) : 148 - 158