The automorphisms of bi-Cayley graphs

被引:71
|
作者
Zhou, Jin-Xin [1 ]
Feng, Yan-Quan [1 ]
机构
[1] Beijing Jiaotong Univ, Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi-Cayley graph; Edge-transitive; Automorphism group; Cayley graph; ABELIAN-GROUPS; SYMMETRIC GRAPHS; DIGRAPHS; ORDER; CONNECTIVITY; BICIRCULANTS; PRIME;
D O I
10.1016/j.jctb.2015.10.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A bi-Cayley graph Gamma is a graph which admits a semiregular group H of automorphisms with two orbits. In this paper, the normalizer of H in the full automorphism group of Gamma is determined. Applying this, a characterization of cubic edge-transitive graphs of order a 2-power is given. As byproducts, we answer a problem proposed in Godsil (1983) [16] regarding the existence of arc-regular non-normal Cayley graphs of order a 2-power, and construct the first known family of cubic semisymmetric graphs of order a 2-power. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:504 / 532
页数:29
相关论文
共 50 条
  • [1] Connectivity of Bi-Cayley graphs
    Liang, Xiaodong
    Meng, Jixiang
    [J]. ARS COMBINATORIA, 2008, 88 : 27 - 32
  • [2] ON BI-CAYLEY GRAPHS OF GROUPS
    Hao, Yifei
    [J]. ARS COMBINATORIA, 2019, 146 : 255 - 271
  • [3] On Hamiltonian property of bi-Cayley graphs
    Duan, Fang
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (08) : 3237 - 3243
  • [4] One-matching bi-Cayley graphs and homogeneous bi-Cayley graphs over finite cyclic groups
    Liu, Xiaogang
    Wu, Tingzeng
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (01): : 88 - 99
  • [5] Edge-transitive bi-Cayley graphs
    Conder, Marston
    Zhou, Jin-Xin
    Feng, Yan-Quan
    Zhang, Mi-Mi
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 264 - 306
  • [6] On cubic bi-Cayley graphs of p -groups
    Li, Na
    Kwon, Young Soo
    Zhou, Jin-Xin
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (04)
  • [7] Isomorphisms of bi-Cayley graphs on Dihedral groups
    Arezoomand, Majid
    Behmaram, Afshin
    Ghasemi, Mohsen
    Raeighasht, Parivash
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (04)
  • [8] The Diameters of Almost All Bi-Cayley Graphs
    Deng, Xingchao
    Meng, Jixiang
    [J]. ARS COMBINATORIA, 2013, 111 : 65 - 74
  • [9] On isomorphisms of small order bi-Cayley graphs
    Jin, Wei
    Liu, Wei Jun
    [J]. UTILITAS MATHEMATICA, 2013, 92 : 317 - 327
  • [10] Semisymmetric cubic graphs constructed from bi-Cayley graphs of An
    Lu, Zaiping
    Wang, Changqun
    Xu, Mingyao
    [J]. ARS COMBINATORIA, 2006, 80 : 177 - 187