Bi-primitive 2-arc-transitive bi-Cayley graphs

被引:0
|
作者
Li, Jing Jian [1 ]
Zhang, Xiao Qian [1 ]
Zhou, Jin-Xin [2 ]
机构
[1] Guangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[2] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi-Cayley graph; Biprimitive; 2-arc-transitive; ARC-TRANSITIVE GRAPHS; PERMUTATION-GROUPS; ORDER; THEOREM;
D O I
10.1007/s10801-024-01297-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A bipartite graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a bi-Cayley graph over a group H if H <= Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\leqslant \textrm{Aut}\Gamma $$\end{document} acts regularly on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. A bi-Cayley graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is said to be a normal bi-Cayley graph over H if H ⊴Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\unlhd \textrm{Aut}\Gamma $$\end{document}, and bi-primitive if the bipartition preserving subgroup of Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Aut}\Gamma $$\end{document} acts primitively on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. In this paper, a classification is given for 2-arc-transitive bi-Cayley graphs which are bi-primitive and non-normal.
引用
收藏
页码:711 / 734
页数:24
相关论文
共 50 条
  • [1] Bi-primitive 2-arc-transitive bi-Cayley graphs
    Jing Jian Li
    Xiao Qian Zhang
    Jin-Xin Zhou
    [J]. Journal of Algebraic Combinatorics, 2024, 59 : 711 - 734
  • [2] On 2-arc-transitive bi-Cayley graphs of finite simple groups
    Li, Jing Jian
    Wang, Yu
    Zhou, Jin-Xin
    [J]. DISCRETE MATHEMATICS, 2024, 347 (06)
  • [3] Edge-transitive bi-Cayley graphs
    Conder, Marston
    Zhou, Jin-Xin
    Feng, Yan-Quan
    Zhang, Mi-Mi
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 264 - 306
  • [4] Arc-transitive Cubic Abelian bi-Cayley Graphs and BCI-graphs
    Koike, Hiroki
    Kovacs, Istvan
    [J]. FILOMAT, 2016, 30 (02) : 321 - 331
  • [5] On 2-arc-transitive Cayley graphs of Abelian groups
    Potocnik, P
    [J]. DISCRETE MATHEMATICS, 2002, 244 (1-3) : 417 - 421
  • [6] 2-Arc-transitive Cayley graphs on alternating groups
    Pan, Jiangmin
    Xia, Binzhou
    Yin, Fugang
    [J]. JOURNAL OF ALGEBRA, 2022, 610 : 655 - 683
  • [7] The automorphisms of bi-Cayley graphs
    Zhou, Jin-Xin
    Feng, Yan-Quan
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 504 - 532
  • [8] Connectivity of Bi-Cayley graphs
    Liang, Xiaodong
    Meng, Jixiang
    [J]. ARS COMBINATORIA, 2008, 88 : 27 - 32
  • [9] Finite 2-arc-transitive abelian Cayley graphs
    Li, Cai Heng
    Pan, Jiangmin
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (01) : 148 - 158
  • [10] ON BI-CAYLEY GRAPHS OF GROUPS
    Hao, Yifei
    [J]. ARS COMBINATORIA, 2019, 146 : 255 - 271