Finite 2-arc-transitive abelian Cayley graphs

被引:69
|
作者
Li, Cai Heng [1 ]
Pan, Jiangmin
机构
[1] Yunnan Univ, Dept Math, Kunming 650031, Peoples R China
[2] Univ Western Australia, Sch Math & Stat, Nedlands, WA 6009, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1016/j.ejc.2006.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a finite 2-arc-transitive Cayley graph of an abelian group. It is shown that either Gamma is explicitly known, or Gamma may be represented as a normal or bi-normal Cayley graph of an abelian or a meta-abelian 2-group. In particular, one of three cases occurs: Gamma = K-n.n - nK(2) where n is even but is not a 2-power, Gamma has 2-power number of vertices, or Gamma is a circulant. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:148 / 158
页数:11
相关论文
共 50 条
  • [1] On 2-arc-transitive Cayley graphs of Abelian groups
    Potocnik, P
    [J]. DISCRETE MATHEMATICS, 2002, 244 (1-3) : 417 - 421
  • [2] On 2-arc-transitive bi-Cayley graphs of finite simple groups
    Li, Jing Jian
    Wang, Yu
    Zhou, Jin-Xin
    [J]. DISCRETE MATHEMATICS, 2024, 347 (06)
  • [3] Tetravalent 2-arc-transitive Cayley graphs on non-abelian simple groups
    Du, Jia-Li
    Feng, Yan-Quan
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (11) : 4565 - 4574
  • [4] 2-Arc-transitive Cayley graphs on alternating groups
    Pan, Jiangmin
    Xia, Binzhou
    Yin, Fugang
    [J]. JOURNAL OF ALGEBRA, 2022, 610 : 655 - 683
  • [5] 2-Arc-transitive hexavalent Cayley graphs on nonabelian simple groups
    Pan, Jiangmin
    Wu, Cixuan
    Zhang, Yingnan
    [J]. COMMUNICATIONS IN ALGEBRA, 2022, 50 (11) : 4891 - 4905
  • [6] Normal edge-transitive and 1/2-arc-transitive semi-Cayley graphs
    Ashrafi, A. R.
    Soleimani, B.
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1287 - 1299
  • [7] On basic 2-arc-transitive graphs
    Zai Ping Lu
    Ruo Yu Song
    [J]. Journal of Algebraic Combinatorics, 2023, 58 : 1081 - 1093
  • [8] Bi-primitive 2-arc-transitive bi-Cayley graphs
    Li, Jing Jian
    Zhang, Xiao Qian
    Zhou, Jin-Xin
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (03) : 711 - 734
  • [9] Bi-primitive 2-arc-transitive bi-Cayley graphs
    Jing Jian Li
    Xiao Qian Zhang
    Jin-Xin Zhou
    [J]. Journal of Algebraic Combinatorics, 2024, 59 : 711 - 734
  • [10] Finite 2-Geodesic Transitive Abelian Cayley Graphs
    Jin, Wei
    Liu, Wei Jun
    Wang, Chang Qun
    [J]. GRAPHS AND COMBINATORICS, 2016, 32 (02) : 713 - 720