Additive conjucyclic codes over a class of Galois rings

被引:0
|
作者
Habibul Islam
Dipak Kumar Bhunia
机构
[1] University of St Gallen,School of Computer Science
[2] Kalinga Institute of Industrial Technology,School of Applied Science
[3] Universitat Autònoma de Barcelona,Department of Information and Communications Engineering
关键词
Additive code; Galois ring; Cyclic code; Conjucyclic code; 94B05; 94B15; 94B35; 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
As a tool towards quantum error correction, additive conjucyclic codes have gained great attention. But, their algebraic structure is completely unknown over finite fields (except Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^2}$$\end{document}) as well as rings. In this article, we investigate the structure of additive conjucyclic codes over Galois rings GR(2r,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GR(2^r,2)$$\end{document}, where r≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 2$$\end{document} is an integer. We develop a one-to-one correspondence between the family of additive conjucyclic codes of length n over GR(2r,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GR(2^r,2)$$\end{document} and the family of linear cyclic codes of length 2n over Z2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{2^r}$$\end{document}. This correspondence helps to obtain additive conjucyclic codes over GR(2r,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GR(2^r,2)$$\end{document} via known linear cyclic codes over Z2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{2^r}$$\end{document}. We prove that the trace dual CTr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {C}}^{Tr}$$\end{document} of an additive conjucyclic code C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {C}}$$\end{document} is also an additive conjucyclic code. Moreover, we derive a necessary and sufficient condition of additive conjucyclic codes to be self-dual. We further propose a technique for constructing linear cyclic codes over Z2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{2^r}$$\end{document} contained in additive conjucyclic codes over GR(2r,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GR(2^r,2)$$\end{document}. Last but not least, we explicitly derive the generator matrices for these codes.
引用
收藏
页码:235 / 250
页数:15
相关论文
共 50 条
  • [1] Additive conjucyclic codes over a class of Galois rings
    Islam, Habibul
    Bhunia, Dipak Kumar
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (01) : 235 - 250
  • [2] Additive codes over Galois rings
    Mahmoudi, Saadoun
    Samei, Karim
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 56 : 332 - 350
  • [3] Enumeration and construction of additive cyclic codes over Galois rings
    Cao, Yonglin
    Gao, Jian
    Fu, Fang-Wei
    Cao, Yuan
    DISCRETE MATHEMATICS, 2015, 338 (06) : 922 - 937
  • [4] ON ADDITIVE CONJUCYCLIC CODES OVER FIELDS AND RINGS OF ORDER p2 USING GAUSSIAN INTEGERS
    Siap, Irfan
    Abualrub, Taher
    Karbaski, Arezoo soufi
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024,
  • [5] ADDITIVE AND LINEAR CONJUCYCLIC CODES OVER F4
    Abualrub, Taher
    Dougherty, Steven T.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (01) : 1 - 15
  • [6] Cyclic codes over Galois rings
    Wan, ZX
    ALGEBRA COLLOQUIUM, 1999, 6 (03) : 291 - 304
  • [7] Cyclic Codes over Galois Rings
    Kaur, Jasbir
    Dutt, Sucheta
    Sehmi, Ranjeet
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016, 2016, 9602 : 233 - 239
  • [8] On cyclic codes over Galois rings
    Kaur, Jasbir
    Dutt, Sucheta
    Sehmi, Ranjeet
    DISCRETE APPLIED MATHEMATICS, 2020, 280 (280) : 156 - 161
  • [9] GALOIS LCD CODES OVER RINGS
    Liu, Zihui
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (01) : 91 - 104
  • [10] Algebraic structure of additive conjucyclic codes over F4
    Abualrub, Taher
    Cao, Yonglin
    Dougherty, Steven T.
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 65