On cyclic codes over Galois rings

被引:6
|
作者
Kaur, Jasbir [1 ]
Dutt, Sucheta [1 ]
Sehmi, Ranjeet [1 ]
机构
[1] PEC Univ Technol, Dept Appl Sci, Chandigarh, India
关键词
Galois ring; Cyclic codes; Grobner basis; Minimal degree polynomial; Torsion codes; STRONG GROBNER BASES; NEGACYCLIC CODES;
D O I
10.1016/j.dam.2018.01.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a Galois ring of characteristic p(a), where p is a prime and a is a natural number. In this paper, the generators of cyclic codes of arbitrary length n over R in terms of minimal degree polynomials of certain subsets of codes have been obtained. Moreover, the explicit set of generators so obtained turns out to be a minimal strong Grobner basis. Some results on torsion codes of a cyclic code over R have also been obtained. Using these results, the size of a cyclic code over R has been expressed in terms of the degrees of its generators. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:156 / 161
页数:6
相关论文
共 50 条
  • [1] Cyclic codes over Galois rings
    Wan, ZX
    [J]. ALGEBRA COLLOQUIUM, 1999, 6 (03) : 291 - 304
  • [2] Cyclic Codes over Galois Rings
    Kaur, Jasbir
    Dutt, Sucheta
    Sehmi, Ranjeet
    [J]. ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016, 2016, 9602 : 233 - 239
  • [3] Affine invariant extended cyclic codes over Galois rings
    Dey, BK
    Rajan, BS
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (04) : 691 - 698
  • [4] Structures of high dimensional cyclic codes over Galois rings
    Lu, PZ
    Liu, ML
    [J]. ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 173 - 173
  • [5] Skew quasi-cyclic codes over Galois rings
    Bhaintwal, Maheshanand
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (01) : 85 - 101
  • [6] Skew quasi-cyclic codes over Galois rings
    Maheshanand Bhaintwal
    [J]. Designs, Codes and Cryptography, 2012, 62 : 85 - 101
  • [7] Weight distribution of double cyclic codes over Galois rings
    Gao, Jian
    Meng, Xiangrui
    Fu, Fang-Wei
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (11) : 2529 - 2549
  • [8] Weight distribution of double cyclic codes over Galois rings
    Jian Gao
    Xiangrui Meng
    Fang-Wei Fu
    [J]. Designs, Codes and Cryptography, 2022, 90 : 2529 - 2549
  • [9] Repeated Root Cyclic and Negacyclic Codes over Galois Rings
    Lopez-Permouth, Sergio R.
    Szabo, Steve
    [J]. APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES, 2009, 5527 : 219 - 222
  • [10] Enumeration and construction of additive cyclic codes over Galois rings
    Cao, Yonglin
    Gao, Jian
    Fu, Fang-Wei
    Cao, Yuan
    [J]. DISCRETE MATHEMATICS, 2015, 338 (06) : 922 - 937