Affine invariant extended cyclic codes over Galois rings

被引:4
|
作者
Dey, BK [1 ]
Rajan, BS
机构
[1] Int Inst Informat Technol, Hyderabad 500019, Andhra Pradesh, India
[2] Indian Inst Sci, Dept Elect Commun Engn, Bangalore 560012, Karnataka, India
关键词
affine invariant codes; automorphism group; cyclic codes; Galois rings; permutation group;
D O I
10.1109/TIT.2004.825044
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, Blackford and Ray-Chaudhuri used transform domain techniques to permutation groups of cyclic codes over Galois rings. They used the same technique to rind a set of necessary and sufficient conditions for extended cyclic codes of length 2(m) over any subring of GR (4, m) to be affine invariant. Here, we use the same technique to find a set of necessary and sufficient conditions for extended cyclic codes of length p(m) over any subring of GR (p', m) to be affine invariant, for e = 2 with arbitrary p and for p = 2 with arbitrary e. These are used to find two new classes of affine invariant Bose-Chaudhuri-Hocquenghem (BCH) and generalized Reed-Muller (GRM) codes over Z(2e) for arbitrary e and a class of affine invariant BCH codes over Z(p2) for arbitrary prime p.
引用
收藏
页码:691 / 698
页数:8
相关论文
共 50 条