Additive codes over Galois rings

被引:8
|
作者
Mahmoudi, Saadoun [1 ]
Samei, Karim [1 ]
机构
[1] Bu Ali Sina Univ, Dept Math, Hamadan, Iran
关键词
Additive code; MDR code; Generator matrix; CYCLIC CODES; MDS;
D O I
10.1016/j.ffa.2018.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S = GR(p(e), m) be a Galois ring of characteristic p(e) and cardinality p(em). An additive code over S of length n is a subgroup of S-n under addition. In this paper, we study additive codes over S. We introduce a correspondence between linear codes over Z(pe) and additive codes over S and we describe additive codes over S by the structure of linear codes over Z(pe). In particular, we find the generator matrix and the number of additive codes over S, and we determine some classes of MDR additive codes over S. Among other results, permutation equivalent additive codes and decomposable additive codes are described. Also we prove MacWilliams identity and Delsarte theorem for additive codes over S. (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:332 / 350
页数:19
相关论文
共 50 条
  • [1] Additive conjucyclic codes over a class of Galois rings
    Habibul Islam
    Dipak Kumar Bhunia
    [J]. Journal of Applied Mathematics and Computing, 2024, 70 : 235 - 250
  • [2] Additive conjucyclic codes over a class of Galois rings
    Islam, Habibul
    Bhunia, Dipak Kumar
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (01) : 235 - 250
  • [3] Enumeration and construction of additive cyclic codes over Galois rings
    Cao, Yonglin
    Gao, Jian
    Fu, Fang-Wei
    Cao, Yuan
    [J]. DISCRETE MATHEMATICS, 2015, 338 (06) : 922 - 937
  • [4] Cyclic codes over Galois rings
    Wan, ZX
    [J]. ALGEBRA COLLOQUIUM, 1999, 6 (03) : 291 - 304
  • [5] Cyclic Codes over Galois Rings
    Kaur, Jasbir
    Dutt, Sucheta
    Sehmi, Ranjeet
    [J]. ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016, 2016, 9602 : 233 - 239
  • [6] On cyclic codes over Galois rings
    Kaur, Jasbir
    Dutt, Sucheta
    Sehmi, Ranjeet
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 280 : 156 - 161
  • [7] GALOIS LCD CODES OVER RINGS
    Liu, Zihui
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (01) : 91 - 104
  • [8] Skew constacyclic codes over Galois rings
    Boucher, Delphine
    Sole, Patrick
    Ulmer, Felix
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (03) : 273 - 292
  • [9] Decoding of linear codes over Galois rings
    Babu, NS
    Zimmermann, KH
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1599 - 1603
  • [10] Some results on codes over Galois rings
    Tapia-Recillas, Horacio
    [J]. 2006 IEEE Information Theory Workshop, 2006, : 112 - 115