Some results on codes over Galois rings

被引:1
|
作者
Tapia-Recillas, Horacio [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09340, DF, Mexico
关键词
D O I
10.1109/ITW.2006.1633792
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a continuation of the study of error-detecting correcting binary codes and codes over finite fields in general, several authors have been studying codes over some finite rings, particularly the ring Z(4) of integers modulo 4 and more generally codes over the ring Z(pn) of integers modulo p(n) (p a prime and n a positive integer). These rings are examples of Galois rings. In this note results appearing in the literature for codes over the ring Zpn are extended for codes over some Galois rings.
引用
收藏
页码:112 / 115
页数:4
相关论文
共 50 条
  • [1] Additive codes over Galois rings
    Mahmoudi, Saadoun
    Samei, Karim
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 56 : 332 - 350
  • [2] Cyclic codes over Galois rings
    Wan, ZX
    ALGEBRA COLLOQUIUM, 1999, 6 (03) : 291 - 304
  • [3] Cyclic Codes over Galois Rings
    Kaur, Jasbir
    Dutt, Sucheta
    Sehmi, Ranjeet
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016, 2016, 9602 : 233 - 239
  • [4] On cyclic codes over Galois rings
    Kaur, Jasbir
    Dutt, Sucheta
    Sehmi, Ranjeet
    DISCRETE APPLIED MATHEMATICS, 2020, 280 (280) : 156 - 161
  • [5] GALOIS LCD CODES OVER RINGS
    Liu, Zihui
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (01) : 91 - 104
  • [6] Some Repeated-Root Constacyclic Codes Over Galois Rings
    Liu, Hongwei
    Maouche, Youcef
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) : 6247 - 6255
  • [7] Skew constacyclic codes over Galois rings
    Boucher, Delphine
    Sole, Patrick
    Ulmer, Felix
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (03) : 273 - 292
  • [8] Decoding of linear codes over Galois rings
    Babu, NS
    Zimmermann, KH
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1599 - 1603
  • [9] Cardinal rank metric codes over Galois rings
    Epelde, Markel
    Rua, Ignacio F.
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77
  • [10] Additive conjucyclic codes over a class of Galois rings
    Habibul Islam
    Dipak Kumar Bhunia
    Journal of Applied Mathematics and Computing, 2024, 70 : 235 - 250