Algebraic structure of additive conjucyclic codes over F4

被引:3
|
作者
Abualrub, Taher [1 ]
Cao, Yonglin [2 ]
Dougherty, Steven T. [3 ]
机构
[1] Amer Univ Sharjah, POB 26666, Sharjah, U Arab Emirates
[2] Shandong Univ Technol, Sch Math & Stat, Zibo 255091, Shandong, Peoples R China
[3] Univ Scranton, Scranton, PA 18510 USA
基金
中国国家自然科学基金;
关键词
Conjucyclic codes; Cyclic codes; Additive codes;
D O I
10.1016/j.ffa.2020.101678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in finding an algebraic structure of conjucyclic codes of length n over the finite field F-4. We show that conjucyclic codes of length n over F-4 are related to binary cyclic codes of length 2n and show that there is a canonical bijective correspondence between the two sets. We illustrate how the factorization of the polynomial x(2n) + 1 plays a critical role in each setting. Moreover, we construct the generator and parity check matrices of conjucyclic codes of length n over F-4. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] ADDITIVE AND LINEAR CONJUCYCLIC CODES OVER F4
    Abualrub, Taher
    Dougherty, Steven T.
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (01) : 1 - 15
  • [2] ADDITIVE TOEPLITZ CODES OVER F4
    Sahin, Murat
    Ozimamoglu, Hayrullah
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (02) : 379 - 395
  • [3] Additive cyclic codes over F4
    Huffman, W. Cary
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (03) : 309 - 343
  • [4] Additive cyclic codes over F4
    Huffman, W. Cary
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2007, 1 (04) : 427 - 459
  • [5] On additive modular bivariate codes over F4
    Martinez-Moro, E.
    Nicolas, A. P.
    Rua, I. F.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2014, 28 : 199 - 213
  • [6] Additive complementary dual codes over F4
    Shi, Minjia
    Liu, Na
    Kim, Jon-Lark
    Sole, Patrick
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (01) : 273 - 284
  • [7] Additive complementary dual codes over F4
    Shi, Minjia
    Liu, Na
    Kim, Jon-Lark
    Sole, Patrick
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022,
  • [8] Additive polycyclic codes over F4 induced by nonbinarypolynomials
    Abualrub, Taher
    Soufi Karbaski, Arezoo
    Aydin, Nuh
    Liu, Peihan
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4855 - 4875
  • [9] Additive cyclic complementary dual codes over F4
    Shi, Minjia
    Liu, Na
    Ozbudak, Ferruh
    Sole, Patrick
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2022, 83
  • [10] Formally self-dual additive codes over F4
    Han, Sunghyu
    Kim, Jon-Lark
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (07) : 787 - 799