On additive modular bivariate codes over F4

被引:1
|
作者
Martinez-Moro, E. [1 ,2 ,3 ]
Nicolas, A. P. [1 ,2 ]
Rua, I. F. [4 ]
机构
[1] Univ Valladolid, Inst Math, Castilla, Spain
[2] Univ Valladolid, Dept Appl Math, Castilla, Spain
[3] Eastern Kentucky Univ, Dept Math & Stat, Richmond, KY USA
[4] Univ Oviedo, Dept Matemat, Oviedo 33007, Asturias, Spain
关键词
Additive codes; Multivariable codes; Abelian codes; Quantum codes; Modular codes; CYCLIC CODES;
D O I
10.1016/j.ffa.2014.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Additive multivariate codes over F-4 (the Galois field with 4 elements) are a natural extension of additive cyclic and abelian codes. A complete description of such codes when the length is odd was presented in [11]. In this paper we study some properties of this family of codes in the case when the length is even (modular case) and the number of variables is two (bivariate codes). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 50 条
  • [1] Multivariable codes in principal ideal polynomial quotient rings with applications to additive modular bivariate codes over F4
    Martinez-Moro, E.
    Pinera-Nicolas, A.
    Rua, I. F.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (02) : 359 - 367
  • [2] ADDITIVE TOEPLITZ CODES OVER F4
    Sahin, Murat
    Ozimamoglu, Hayrullah
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (02) : 379 - 395
  • [3] Additive cyclic codes over F4
    Huffman, W. Cary
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (03) : 309 - 343
  • [4] Additive cyclic codes over F4
    Huffman, W. Cary
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2007, 1 (04) : 427 - 459
  • [5] Additive complementary dual codes over F4
    Shi, Minjia
    Liu, Na
    Kim, Jon-Lark
    Sole, Patrick
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (01) : 273 - 284
  • [6] ADDITIVE AND LINEAR CONJUCYCLIC CODES OVER F4
    Abualrub, Taher
    Dougherty, Steven T.
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (01) : 1 - 15
  • [7] Additive complementary dual codes over F4
    Shi, Minjia
    Liu, Na
    Kim, Jon-Lark
    Sole, Patrick
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022,
  • [8] Additive polycyclic codes over F4 induced by nonbinarypolynomials
    Abualrub, Taher
    Soufi Karbaski, Arezoo
    Aydin, Nuh
    Liu, Peihan
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4855 - 4875
  • [9] Algebraic structure of additive conjucyclic codes over F4
    Abualrub, Taher
    Cao, Yonglin
    Dougherty, Steven T.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2020, 65
  • [10] Additive cyclic complementary dual codes over F4
    Shi, Minjia
    Liu, Na
    Ozbudak, Ferruh
    Sole, Patrick
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2022, 83