An observation-based scaling model for climate sensitivity estimates and global projections to 2100

被引:0
|
作者
Raphaël Hébert
Shaun Lovejoy
Bruno Tremblay
机构
[1] Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung,Department of Physics
[2] McGill University,Department of Atmospheric and Oceanic Sciences
[3] McGill University,undefined
来源
Climate Dynamics | 2021年 / 56卷
关键词
Global mean temperature; Projections; Climate sensitivity; RCP scenarios; Global warming; Scaling;
D O I
暂无
中图分类号
学科分类号
摘要
We directly exploit the stochasticity of the internal variability, and the linearity of the forced response to make global temperature projections based on historical data and a Green’s function, or Climate Response Function (CRF). To make the problem tractable, we take advantage of the temporal scaling symmetry to define a scaling CRF characterized by the scaling exponent H, which controls the long-range memory of the climate, i.e. how fast the system tends toward a steady-state, and an inner scale τ≈2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \approx 2$$\end{document}   years below which the higher-frequency response is smoothed out. An aerosol scaling factor and a non-linear volcanic damping exponent were introduced to account for the large uncertainty in these forcings. We estimate the model and forcing parameters by Bayesian inference which allows us to analytically calculate the transient climate response and the equilibrium climate sensitivity as: 1.7-0.2+0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.7^{+0.3} _{-0.2}$$\end{document}  K and 2.4-0.6+1.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.4^{+1.3} _{-0.6}$$\end{document}  K respectively (likely range). Projections to 2100 according to the RCP 2.6, 4.5 and 8.5 scenarios yield warmings with respect to 1880–1910 of: 1.5-0.2+0.4K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.5^{+0.4}_{-0.2}K$$\end{document}, 2.3-0.5+0.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.3^{+0.7}_{-0.5}$$\end{document}  K and 4.2-0.9+1.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4.2^{+1.3}_{-0.9}$$\end{document}  K. These projection estimates are lower than the ones based on a Coupled Model Intercomparison Project phase 5 multi-model ensemble; more importantly, their uncertainties are smaller and only depend on historical temperature and forcing series. The key uncertainty is due to aerosol forcings; we find a modern (2005) forcing value of [-1.0,-0.3]Wm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-1.0, -0.3]\, \,\,\mathrm{Wm} ^{-2}$$\end{document} (90 % confidence interval) with median at -0.7Wm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.7 \,\,\mathrm{Wm} ^{-2}$$\end{document}. Projecting to 2100, we find that to keep the warming below 1.5 K, future emissions must undergo cuts similar to RCP 2.6 for which the probability to remain under 1.5 K is 48 %. RCP 4.5 and RCP 8.5-like futures overshoot with very high probability.
引用
收藏
页码:1105 / 1129
页数:24
相关论文
共 50 条
  • [21] Observation-Based Estimates of Water Mass Transformation and Formation in the Labrador Sea
    Zou, Sijia
    Petit, Tillys
    Li, Feili
    Lozier, M. Susan
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2024, 54 (07) : 1411 - 1429
  • [22] Global Sea Level Projections to 2100 Using Methodology of the Intergovernmental Panel on Climate Change
    Houston, James R.
    JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING, 2013, 139 (02) : 82 - 87
  • [23] An observation-based constraint on permafrost loss as a function of global warming
    Chadburn, S. E.
    Burke, E. J.
    Cox, P. M.
    Friedlingstein, P.
    Hugelius, G.
    Westermann, S.
    NATURE CLIMATE CHANGE, 2017, 7 (05) : 340 - +
  • [24] An observation-based constraint on permafrost loss as a function of global warming
    Chadburn S.E.
    Burke E.J.
    Cox P.M.
    Friedlingstein P.
    Hugelius G.
    Westermann S.
    Nature Climate Change, 2017, 7 (5) : 340 - 344
  • [25] Carbon-climate feedbacks: a review of model and observation based estimates
    Friedlingstein, P.
    Prentice, I. C.
    CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY, 2010, 2 (04) : 251 - 257
  • [26] A framework for observation-based modelling in model-based testing
    Kanstrén, Teemu
    VTT Publications, 2010, (727): : 1 - 211
  • [27] Introducing observation-based physics into the WAM wave model
    Kousal, Joshua
    Liu, Qingxiang
    Bidlot, Jean-Raymond
    Behrens, Arno
    Guenther, Heinz
    Staneva, Joanna
    Babanin, Alexander V.
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 2, 2022,
  • [28] Slow climate mode reconciles historical and model-based estimates of climate sensitivity
    Proistosescu, Cristian
    Huybers, Peter J.
    SCIENCE ADVANCES, 2017, 3 (07):
  • [29] Summer temperatures in Europe and land heat fluxes in observation-based data and regional climate model simulations
    Annemiek I. Stegehuis
    Robert Vautard
    Philippe Ciais
    Adriaan J. Teuling
    Martin Jung
    Pascal Yiou
    Climate Dynamics, 2013, 41 : 455 - 477
  • [30] Observation-based estimates of land availability for wind power: a case study for Czechia
    Felix Nitsch
    Olga Turkovska
    Johannes Schmidt
    Energy, Sustainability and Society, 9