An observation-based constraint on permafrost loss as a function of global warming

被引:0
|
作者
Chadburn, S. E. [1 ,2 ]
Burke, E. J. [3 ]
Cox, P. M. [2 ]
Friedlingstein, P. [2 ]
Hugelius, G. [4 ]
Westermann, S. [5 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England
[3] Met Off Hadley Ctr, FitzRoy Rd, Exeter EX1 3PB, Devon, England
[4] Stockholm Univ, Dept Phys Geog, S-10691 Stockholm, Sweden
[5] Univ Oslo, Dept Geosci, POB 1047 Blindern, NO-0316 Oslo, Norway
基金
瑞典研究理事会;
关键词
CLIMATE-CHANGE; CARBON;
D O I
10.1038/NCLIMATE3262
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Permafrost, which covers 15 million km(2) of the land surface, is one of the components of the Earth system that is most sensitive to warming(1,2). Loss of permafrost would radically change high-latitude hydrology and biogeochemical cycling, and could therefore provide very significant feedbacks on climate change(3-8). The latest climate models all predict warming of high-latitude soils and thus thawing of permafrost under future climate change, but with widely varying magnitudes of permafrost thaw(9,10). Here we show that in each of the models, their present-day spatial distribution of permafrost and air temperature can be used to infer the sensitivity of permafrost to future global warming. Using the same approach for the observed permafrost distribution and air temperature, we estimate a sensitivity of permafrost area loss to global mean warming at stabilization of 4.0(-1.1)(+1.0) million km(2) degrees C-1 (1 sigma confidence), which is around 20% higher than previous studies(9). Our method facilitates an assessment for COP21 climate change targets(11): if the climate is stabilized at 2 degrees C above pre-industrial levels, we estimate that the permafrost area would eventually be reduced by over 40%. Stabilizing at 1.5 degrees C rather than 2 degrees C would save approximately 2 million km(2) of permafrost.
引用
收藏
页码:340 / +
页数:6
相关论文
共 50 条
  • [1] An observation-based constraint on permafrost loss as a function of global warming
    Chadburn S.E.
    Burke E.J.
    Cox P.M.
    Friedlingstein P.
    Hugelius G.
    Westermann S.
    Nature Climate Change, 2017, 7 (5) : 340 - 344
  • [3] Permafrost is warming at a global scale
    Boris K. Biskaborn
    Sharon L. Smith
    Jeannette Noetzli
    Heidrun Matthes
    Gonçalo Vieira
    Dmitry A. Streletskiy
    Philippe Schoeneich
    Vladimir E. Romanovsky
    Antoni G. Lewkowicz
    Andrey Abramov
    Michel Allard
    Julia Boike
    William L. Cable
    Hanne H. Christiansen
    Reynald Delaloye
    Bernhard Diekmann
    Dmitry Drozdov
    Bernd Etzelmüller
    Guido Grosse
    Mauro Guglielmin
    Thomas Ingeman-Nielsen
    Ketil Isaksen
    Mamoru Ishikawa
    Margareta Johansson
    Halldor Johannsson
    Anseok Joo
    Dmitry Kaverin
    Alexander Kholodov
    Pavel Konstantinov
    Tim Kröger
    Christophe Lambiel
    Jean-Pierre Lanckman
    Dongliang Luo
    Galina Malkova
    Ian Meiklejohn
    Natalia Moskalenko
    Marc Oliva
    Marcia Phillips
    Miguel Ramos
    A. Britta K. Sannel
    Dmitrii Sergeev
    Cathy Seybold
    Pavel Skryabin
    Alexander Vasiliev
    Qingbai Wu
    Kenji Yoshikawa
    Mikhail Zheleznyak
    Hugues Lantuit
    Nature Communications, 10
  • [4] Permafrost is warming at a global scale
    Biskaborn, Boris K.
    Smith, Sharon L.
    Noetzli, Jeannette
    Matthes, Heidrun
    Vieira, Goncalo
    Streletskiy, Dmitry A.
    Schoeneich, Philippe
    Romanovsky, Vladimir E.
    Lewkowicz, Antoni G.
    Abramov, Andrey
    Allard, Michel
    Boike, Julia
    Cable, William L.
    Christiansen, Hanne H.
    Delaloye, Reynald
    Diekmann, Bernhard
    Drozdov, Dmitry
    Etzelmueller, Bernd
    Grosse, Guido
    Guglielmin, Mauro
    Ingeman-Nielsen, Thomas
    Isaksen, Ketil
    Ishikawa, Mamoru
    Johansson, Margareta
    Johannsson, Halldor
    Joo, Anseok
    Kaverin, Dmitry
    Kholodov, Alexander
    Konstantinov, Pavel
    Kroeger, Tim
    Lambiel, Christophe
    Lanckman, Jean-Pierre
    Luo, Dongliang
    Malkova, Galina
    Meiklejohn, Ian
    Moskalenko, Natalia
    Oliva, Marc
    Phillips, Marcia
    Ramos, Miguel
    Sannel, A. Britta K.
    Sergeev, Dmitrii
    Seybold, Cathy
    Skryabin, Pavel
    Vasiliev, Alexander
    Wu, Qingbai
    Yoshikawa, Kenji
    Zheleznyak, Mikhail
    Lantuit, Hugues
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] Permafrost and global warming: Strategies of adaptation
    Anisimov, OA
    Nelson, FE
    ADAPTING TO CLIMATE CHANGE: AN INTERNATIONAL PERSPECTIVE, 1996, : 440 - 449
  • [6] Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity
    von Deimling, T. Schneider
    Grosse, G.
    Strauss, J.
    Schirrmeister, L.
    Morgenstern, A.
    Schaphoff, S.
    Meinshausen, M.
    Boike, J.
    BIOGEOSCIENCES, 2015, 12 (11) : 3469 - 3488
  • [7] Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming
    Khvorostyanov, D. V.
    Ciais, P.
    Krinner, G.
    Zimov, S. A.
    Corradi, Ch.
    Guggenberger, G.
    TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2008, 60 (02) : 265 - 275
  • [8] Impact of global warming rate on permafrost degradation
    Demchenko, P. F.
    Eliseev, A. V.
    Arzhanov, M. M.
    Mokhov, I. I.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2006, 42 (01) : 32 - 39
  • [9] Impact of global warming rate on permafrost degradation
    P. F. Demchenko
    A. V. Eliseev
    M. M. Arzhanov
    I. I. Mokhov
    Izvestiya, Atmospheric and Oceanic Physics, 2006, 42 : 32 - 39
  • [10] GLOBAL WARMING AND PERMAFROST IN EURASIA - A CATASTROPHIC SCENARIO
    DEMEK, J
    GEOMORPHOLOGY, 1994, 10 (1-4) : 317 - 329