An observation-based scaling model for climate sensitivity estimates and global projections to 2100

被引:0
|
作者
Raphaël Hébert
Shaun Lovejoy
Bruno Tremblay
机构
[1] Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung,Department of Physics
[2] McGill University,Department of Atmospheric and Oceanic Sciences
[3] McGill University,undefined
来源
Climate Dynamics | 2021年 / 56卷
关键词
Global mean temperature; Projections; Climate sensitivity; RCP scenarios; Global warming; Scaling;
D O I
暂无
中图分类号
学科分类号
摘要
We directly exploit the stochasticity of the internal variability, and the linearity of the forced response to make global temperature projections based on historical data and a Green’s function, or Climate Response Function (CRF). To make the problem tractable, we take advantage of the temporal scaling symmetry to define a scaling CRF characterized by the scaling exponent H, which controls the long-range memory of the climate, i.e. how fast the system tends toward a steady-state, and an inner scale τ≈2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \approx 2$$\end{document}   years below which the higher-frequency response is smoothed out. An aerosol scaling factor and a non-linear volcanic damping exponent were introduced to account for the large uncertainty in these forcings. We estimate the model and forcing parameters by Bayesian inference which allows us to analytically calculate the transient climate response and the equilibrium climate sensitivity as: 1.7-0.2+0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.7^{+0.3} _{-0.2}$$\end{document}  K and 2.4-0.6+1.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.4^{+1.3} _{-0.6}$$\end{document}  K respectively (likely range). Projections to 2100 according to the RCP 2.6, 4.5 and 8.5 scenarios yield warmings with respect to 1880–1910 of: 1.5-0.2+0.4K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.5^{+0.4}_{-0.2}K$$\end{document}, 2.3-0.5+0.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.3^{+0.7}_{-0.5}$$\end{document}  K and 4.2-0.9+1.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4.2^{+1.3}_{-0.9}$$\end{document}  K. These projection estimates are lower than the ones based on a Coupled Model Intercomparison Project phase 5 multi-model ensemble; more importantly, their uncertainties are smaller and only depend on historical temperature and forcing series. The key uncertainty is due to aerosol forcings; we find a modern (2005) forcing value of [-1.0,-0.3]Wm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-1.0, -0.3]\, \,\,\mathrm{Wm} ^{-2}$$\end{document} (90 % confidence interval) with median at -0.7Wm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.7 \,\,\mathrm{Wm} ^{-2}$$\end{document}. Projecting to 2100, we find that to keep the warming below 1.5 K, future emissions must undergo cuts similar to RCP 2.6 for which the probability to remain under 1.5 K is 48 %. RCP 4.5 and RCP 8.5-like futures overshoot with very high probability.
引用
收藏
页码:1105 / 1129
页数:24
相关论文
共 50 条
  • [41] Observation-based estimates of heat and freshwater exchanges from the subtropical North Atlantic to the Arctic
    Li, Feili
    Lozier, M. Susan
    Holliday, N. Penny
    Johns, William E.
    Bras, Isabela A. Le
    Moat, Ben I.
    Cunningham, Stuart A.
    de Jong, M. Femke
    PROGRESS IN OCEANOGRAPHY, 2021, 197
  • [42] Observation-based trajectory of future sea level for the coastal United States tracks near high-end model projections
    Benjamin D. Hamlington
    Don P. Chambers
    Thomas Frederikse
    Soenke Dangendorf
    Severine Fournier
    Brett Buzzanga
    R. Steven Nerem
    Communications Earth & Environment, 3
  • [43] Observation-Based Time-Varying MIMO Channel Model
    Willink, Tricia J.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2010, 59 (01) : 3 - 15
  • [44] Observation-based trajectory of future sea level for the coastal United States tracks near high-end model projections
    Hamlington, Benjamin D.
    Chambers, Don P.
    Frederikse, Thomas
    Dangendorf, Soenke
    Fournier, Severine
    Buzzanga, Brett
    Nerem, R. Steven
    COMMUNICATIONS EARTH & ENVIRONMENT, 2022, 3 (01):
  • [45] Observation-Based Estimates of Surface Cooling Inhibition by Heavy Rainfall under Tropical Cyclones
    Jourdain, Nicolas C.
    Lengaigne, Matthieu
    Vialard, Jerome
    Madec, Gurvan
    Menkes, Christophe E.
    Vincent, Emmanuel M.
    Jullien, Swen
    Barnier, Bernard
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2013, 43 (01) : 205 - 221
  • [46] Global Wave Hindcasts Using the Observation-Based Source Terms: Description and Validation
    Liu, Qingxiang
    Babanin, Alexander V.
    Rogers, W. Erick
    Zieger, Stefan
    Young, Ian R.
    Bidlot, Jean-Raymond
    Durrant, Tom
    Ewans, Kevin
    Guan, Changlong
    Kirezci, Cagil
    Lemos, Gil
    MacHutchon, Keith
    Moon, Il-Ju
    Rapizo, Henrique
    Ribal, Agustinus
    Semedo, Alvaro
    Wang, Juanjuan
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2021, 13 (08)
  • [47] GRUN: an observation-based global gridded runoff dataset from 1902 to 2014
    Ghiggi, Gionata
    Humphrey, Vincent
    Seneviratne, Sonia I.
    Gudmundsson, Lukas
    EARTH SYSTEM SCIENCE DATA, 2019, 11 (04) : 1655 - 1674
  • [48] Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor
    Szulejko, Jan E.
    Kumar, Pawan
    Deep, Akash
    Kim, Ki-Hyun
    ATMOSPHERIC POLLUTION RESEARCH, 2017, 8 (01) : 136 - 140
  • [49] Ground-level ozone over time: An observation-based global overview
    Sicard, Pierre
    CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH, 2021, 19
  • [50] Observation-based global biospheric excess radiocarbon inventory 1963-2005
    Naegler, Tobias
    Levin, Ingeborg
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114