A Poisson Formula for the Schrödinger Operator

被引:0
|
作者
Rémi Carles
Tohru Ozawa
机构
[1] CNRS & Université Montpellier 2,Department of Mathematics
[2] Mathématiques,undefined
[3] Hokkaido University,undefined
关键词
Schrödinger group; Nonlinear Schrödinger equation; Scattering theory; Dispersive properties; 35P25; 35Q55; 42A38; 47F05; 81U30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Poisson type formula for the Schrödinger group. Such a formula had been derived in a previous article by the authors, as a consequence of the study of the asymptotic behavior of nonlinear wave operators for small data. In this note, we propose a direct proof, and extend the range allowed for the power of the nonlinearity to the set of all short range nonlinearities. Moreover, H1-critical nonlinearities are allowed.
引用
收藏
页码:475 / 483
页数:8
相关论文
共 50 条
  • [31] On a Schrödinger–Poisson system with singularity and critical nonlinearities
    Zhipeng Cai
    Chunyu Lei
    Changmu Chu
    Boundary Value Problems, 2020
  • [32] On the Linear Stability of Crystals in the Schrödinger–Poisson Model
    A. Komech
    E. Kopylova
    Journal of Statistical Physics, 2016, 165 : 246 - 273
  • [33] Schrödinger–Poisson systems in the 3-sphere
    Emmanuel Hebey
    Juncheng Wei
    Calculus of Variations and Partial Differential Equations, 2013, 47 : 25 - 54
  • [34] Schr?dinger-Poisson solitons: Perturbation theory
    Zagorac, J. Luna
    Sands, Isabel
    Padmanabhan, Nikhil
    Easther, Richard
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [35] Stability of Schrdinger-Poisson type equations
    黄娟
    张健
    陈光淦
    Applied Mathematics and Mechanics(English Edition), 2009, 30 (11) : 1469 - 1474
  • [36] Multiple solutions for a quasilinear Schrödinger–Poisson system
    Jing Zhang
    Boundary Value Problems, 2021
  • [37] Schrödinger–Poisson systems under gradient fields
    Kamel Ourabah
    Scientific Reports, 12
  • [38] Sturm-Schrödinger equations: Formula for metric
    Miloslav Znojil
    Hendrik B. Geyer
    Pramana, 2009, 73 : 299 - 306
  • [39] On Levels of a Weakly Perturbed Periodic Schrödinger Operator
    Yu.P. Chuburin
    Communications in Mathematical Physics, 2004, 249 : 497 - 510
  • [40] Inverse Scattering for a Schr■dinger Operator with a Repulsive Potential
    Francois NICOLEAU
    ActaMathematicaSinica(EnglishSeries), 2006, 22 (05) : 1485 - 1492