On the Linear Stability of Crystals in the Schrödinger–Poisson Model

被引:0
|
作者
A. Komech
E. Kopylova
机构
[1] Vienna University,Faculty of Mathematics
[2] RAS,Institute for Information Transmission Problems
来源
关键词
Crystal; Lattice; Ground state; Linear stability; Bloch transform; Hamilton operator; 35L10; 34L25; 47A40; 81U05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Schrödinger–Poisson–Newton equations for crystals with one ion per cell. We linearize this dynamics at the periodic minimizers of energy per cell and introduce a novel class of the ion charge densities that ensures the stability of the linearized dynamics. Our main result is the energy positivity for the Bloch generators of the linearized dynamics under a Wiener-type condition on the ion charge density. We also adopt an additional ‘Jellium’ condition which cancels the negative contribution caused by the electrostatic instability and provides the ‘Jellium’ periodic minimizers and the optimality of the lattice: the energy per cell of the periodic minimizer attains the global minimum among all possible lattices. We show that the energy positivity can fail if the Jellium condition is violated, while the Wiener condition holds. The proof of the energy positivity relies on a novel factorization of the corresponding Hamilton functional. The Bloch generators are nonselfadjoint (and even nonsymmetric) Hamilton operators. We diagonalize these generators using our theory of spectral resolution of the Hamilton operators with positive definite energy (Komech and Kopylova in, J Stat Phys 154(1–2):503–521, 2014, J Spectral Theory 5(2):331–361, 2015). The stability of the linearized crystal dynamics is established using this spectral resolution.
引用
收藏
页码:246 / 273
页数:27
相关论文
共 50 条
  • [1] Stability of Schrödinger-Poisson type equations
    Juan Huang
    Jian Zhang
    Guang-gan Chen
    Applied Mathematics and Mechanics, 2009, 30 : 1469 - 1474
  • [2] Stability of Schrdinger-Poisson type equations
    黄娟
    张健
    陈光淦
    Applied Mathematics and Mechanics(English Edition), 2009, 30 (11) : 1469 - 1474
  • [3] Ground states for asymptotically linear fractional Schrödinger–Poisson systems
    Peng Chen
    Xiaochun Liu
    Journal of Pseudo-Differential Operators and Applications, 2021, 12
  • [4] On the Linear Stability of Crystals in the Schrodinger-Poisson Model
    Komech, A.
    Kopylova, E.
    JOURNAL OF STATISTICAL PHYSICS, 2016, 165 (02) : 246 - 273
  • [5] Existence and stability results for the planar Schrödinger-Poisson system
    Guoqing Zhang
    Wenyan Guo
    Weiguo Zhang
    Archiv der Mathematik, 2016, 107 : 561 - 568
  • [6] Existence and Nonlinear Stability of Stationary States of the Schrödinger–Poisson System
    Peter A. Markowich
    Gerhard Rein
    Gershon Wolansky
    Journal of Statistical Physics, 2002, 106 : 1221 - 1239
  • [7] On Schrödinger-Poisson Systems
    Antonio Ambrosetti
    Milan Journal of Mathematics, 2008, 76 : 257 - 274
  • [8] A Poisson Formula for the Schrödinger Operator
    Rémi Carles
    Tohru Ozawa
    Journal of Fourier Analysis and Applications, 2008, 14 : 475 - 483
  • [9] On a one-dimensional Schrödinger-Poisson scattering model
    N. Ben Abdallah
    P. Degond
    P. A. Markowich
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1997, 48 : 135 - 155
  • [10] A Variational Approach to the Schrödinger–Poisson System: Asymptotic Behaviour, Breathers, and Stability
    Enrique Ruíz Arriola
    Juan Soler
    Journal of Statistical Physics, 2001, 103 : 1069 - 1105