Stability of Schrdinger-Poisson type equations

被引:3
|
作者
黄娟 [1 ]
张健 [1 ]
陈光淦 [1 ]
机构
[1] College of Mathematics and Software Science,Sichuan Normal University
基金
中国国家自然科学基金;
关键词
Schrdinger-Poisson type equations; ground state; existence; orbital sta-bility;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
Variational methods are used to study the nonlinear Schrdinger-Poisson type equations which model the electromagnetic wave propagating in the plasma in physics. By analyzing the Hamiltonian property to construct a constrained variational problem, the existence of the ground state of the system is obtained. Furthermore, it is shown that the ground state is orbitally stable.
引用
收藏
页码:1469 / 1474
页数:6
相关论文
共 50 条
  • [1] Stability of Schrödinger-Poisson type equations
    Juan Huang
    Jian Zhang
    Guang-gan Chen
    Applied Mathematics and Mechanics, 2009, 30 : 1469 - 1474
  • [2] On Schrödinger-Poisson Systems
    Antonio Ambrosetti
    Milan Journal of Mathematics, 2008, 76 : 257 - 274
  • [3] Ground states for Schrödinger-Poisson type systems
    Vaira G.
    Ricerche di Matematica, 2011, 60 (2) : 263 - 297
  • [4] Infinitely Many Solutions for Schrödinger-Poisson Systems and Schrödinger-Kirchhoff Equations
    Liu, Shibo
    MATHEMATICS, 2024, 12 (14)
  • [5] Existence and Concentration of Solutions For Sublinear Schrödinger-Poisson Equations
    Anmin Mao
    Yusong Chen
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 339 - 348
  • [6] Existence and stability results for the planar Schrödinger-Poisson system
    Guoqing Zhang
    Wenyan Guo
    Weiguo Zhang
    Archiv der Mathematik, 2016, 107 : 561 - 568
  • [7] Critical planar Schrödinger-Poisson equations: existence, multiplicity and concentration
    Li, Yiqing
    Radulescu, Vicentiu D.
    Zhang, Binlin
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (03)
  • [8] Stable standing waves for a class of nonlinear Schrödinger-Poisson equations
    Jacopo Bellazzini
    Gaetano Siciliano
    Zeitschrift für angewandte Mathematik und Physik, 2011, 62 : 267 - 280
  • [9] On sublinear fractional Schrödinger-Poisson systems
    Benhassine, Abderrazek
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (03):
  • [10] Schr?dinger-Poisson solitons: Perturbation theory
    Zagorac, J. Luna
    Sands, Isabel
    Padmanabhan, Nikhil
    Easther, Richard
    PHYSICAL REVIEW D, 2022, 105 (10)