Existence and Concentration of Solutions For Sublinear Schrödinger-Poisson Equations

被引:0
|
作者
Anmin Mao
Yusong Chen
机构
[1] Qufu Normal University,School of Mathematical Sciences
关键词
Schrödinger-Poisson problem; Sublinear; concentration of solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We concern the sublinear Schrödinger-Poisson equations {−Δu+λV(x)u+ϕu=f(x,u)inℝ3−Δϕ=u 2inℝ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{gathered} - \Delta u + \lambda V\left( x \right)u + \phi u = f\left( {x,u} \right)in{\mathbb{R}^3} \hfill \\ - \Delta \phi = {u^2}in{\mathbb{R}^3} \hfill \\ \end{gathered} \right.$$\end{document} where λ > 0 is a parameter, V ∈ C(R3,[0,+∞)), f ∈ C(R3×R,R) and V-1(0) has nonempty interior. We establish the existence of solution and explore the concentration of solutions on the set V-1(0) as λ → ∞ as well. Our results improve and extend some related works.
引用
收藏
页码:339 / 348
页数:9
相关论文
共 50 条
  • [1] Critical planar Schrödinger-Poisson equations: existence, multiplicity and concentration
    Li, Yiqing
    Radulescu, Vicentiu D.
    Zhang, Binlin
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (03)
  • [2] Existence and Concentration of Solutions for the Sublinear Fractional Schrödinger–Poisson System
    Guofeng Che
    Haibo Chen
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 2843 - 2863
  • [3] On sublinear fractional Schrödinger-Poisson systems
    Benhassine, Abderrazek
    [J]. PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (03):
  • [4] On the existence of solutions for nonhomogeneous Schrödinger-Poisson system
    Lixia Wang
    Shiwang Ma
    Xiaoming Wang
    [J]. Boundary Value Problems, 2016
  • [5] On the existence of solutions for nonlinear Schrödinger-Poisson system
    Correa, Genivaldo dos Passos
    dos Santos, Gelson C. G.
    Silva, Julio Roberto S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [7] Existence and multiplicity of solutions for the Schrödinger-Poisson equation with prescribed mass
    Peng, Xueqin
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (05)
  • [8] Existence of infinitely many solutions for generalized Schrödinger-Poisson system
    Liping Xu
    Haibo Chen
    [J]. Boundary Value Problems, 2014
  • [9] Stability of Schrdinger-Poisson type equations
    黄娟
    张健
    陈光淦
    [J]. Applied Mathematics and Mechanics(English Edition), 2009, 30 (11) : 1469 - 1474
  • [10] Stability of Schrödinger-Poisson type equations
    Juan Huang
    Jian Zhang
    Guang-gan Chen
    [J]. Applied Mathematics and Mechanics, 2009, 30 : 1469 - 1474