Stability of Schrdinger-Poisson type equations

被引:3
|
作者
黄娟 [1 ]
张健 [1 ]
陈光淦 [1 ]
机构
[1] College of Mathematics and Software Science,Sichuan Normal University
基金
中国国家自然科学基金;
关键词
Schrdinger-Poisson type equations; ground state; existence; orbital sta-bility;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
Variational methods are used to study the nonlinear Schrdinger-Poisson type equations which model the electromagnetic wave propagating in the plasma in physics. By analyzing the Hamiltonian property to construct a constrained variational problem, the existence of the ground state of the system is obtained. Furthermore, it is shown that the ground state is orbitally stable.
引用
收藏
页码:1469 / 1474
页数:6
相关论文
共 50 条
  • [41] Normalized solutions for a fractional Schrödinger-Poisson system with critical growth
    He, Xiaoming
    Meng, Yuxi
    Squassina, Marco
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (06)
  • [42] NORMALIZED SOLUTIONS FOR PLANAR SCHRÖDINGER-POISSON SYSTEM WITH A POSITIVE POTENTIAL
    Shu, Muhua
    Wen, Lixi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [43] Positive solutions for a planar Schr?dinger-Poisson system with prescribed mass
    Tao, Mengfei
    Zhang, Binlin
    APPLIED MATHEMATICS LETTERS, 2023, 137
  • [44] Solutions of a quasilinear Schrödinger-Poisson system with linearly bounded nonlinearities
    Li, Anran
    Wei, Chongqing
    Zhao, Leiga
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (02):
  • [45] 带竞争势Schr?dinger-Poisson系统的解
    魏重庆
    李安然
    山西大学学报(自然科学版), 2022, 45 (05) : 1179 - 1185
  • [46] Solutions for a Logarithmic Fractional Schrödinger-Poisson System with Asymptotic Potential
    Guo, Lifeng
    Li, Yuan
    Liang, Sihua
    FRACTAL AND FRACTIONAL, 2024, 8 (09)
  • [47] Schrödinger-Poisson systems with zero mass in the Sobolev limiting case
    Romani, Giulio
    MATHEMATISCHE NACHRICHTEN, 2024,
  • [48] GROUND STATE SOLUTIONS FOR A SCHR?DINGER-POISSON SYSTEM WITH UNCONVENTIONAL POTENTIAL
    杜瑶
    唐春雷
    Acta Mathematica Scientia, 2020, 40 (04) : 934 - 944
  • [49] A multi-purpose Schrödinger-Poisson Solver for TCAD applications
    Markus Karner
    Andreas Gehring
    Stefan Holzer
    Mahdi Pourfath
    Martin Wagner
    Wolfgang Goes
    Martin Vasicek
    Oskar Baumgartner
    Christian Kernstock
    Klaus Schnass
    Gerhard Zeiler
    Tibor Grasser
    Hans Kosina
    Siegfried Selberherr
    Journal of Computational Electronics, 2007, 6 : 179 - 182
  • [50] Existence and multiplicity of solutions for the Schrödinger-Poisson equation with prescribed mass
    Peng, Xueqin
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (05)